检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:王丹丹 汤健[1,2,3] 夏恒 乔俊飞[1,2,3] WANG Dan-Dan;TANG Jian;XIA Heng;QIAO Jun-Fei(Faculty of Information Technology,Beijing University of Technology,Beijing 100124;Beijing Laboratory of Smart Environmental Protection,Beijing University of Technology,Beijing 100124;Engineering Research Center of Intelligent Perception and Autonomous Control,Ministry of Education,Beijing University of Technology,Beijing 100124)
机构地区:[1]北京工业大学信息学部,北京100124 [2]北京工业大学智慧环保北京实验室,北京100124 [3]北京工业大学智能感知与自主控制教育部工程研究中心,北京100124
出 处:《自动化学报》2024年第4期790-811,共22页Acta Automatica Sinica
基 金:国家自然科学基金(62073006,62173120,62021003);北京市自然科学基金资助项目(4212032,4192009);科技创新2030——“新一代人工智能”重大项目(2021ZD0112301,2021ZD0112302)资助。
摘 要:受限于检测技术难度、高时间与经济成本等原因,难测参数的软测量模型建模样本存在数量少、分布稀疏与不平衡等问题,严重制约了数据驱动模型的泛化性能.针对以上问题,提出一种基于多目标粒子群优化(Multi-objective particle swarm optimization, MOPSO)混合优化的虚拟样本生成(Virtual sample generation, VSG)方法.首先,设计综合学习粒子群优化算法的种群表征机制,使其能够同时编码用于连续变量和离散变量;然后,定义具有多阶段多目标特性的综合学习粒子群优化算法适应度函数,使其能够在确保模型泛化性能的同时最小化虚拟样本数量;最后,提出面向虚拟样本生成的多目标混合优化任务以改进综合学习粒子群优化算法,使其能够适应虚拟样本优选过程的变维特性并提高收敛速度.同时,首次借鉴度量学习提出用于评价虚拟样本质量的综合评价指标和分布相似指标.利用基准数据集和真实工业数据集验证了所提方法的有效性和优越性.Due to the difficulty of detection technology,and high time and economic cost,the modeling samples of soft-sensing model with difficult parameters have some problems,such as small numbers,sparse distribution,and imbalance,which seriously restrict the generalization performance of data-driven models.To solve the above problems,a virtual sample generation(VSG)method based on multi-objective particle swarm optimization(MOPSO)hybrid optimization is proposed.First,the population representation mechanism of the integrated learning particle swarm optimization algorithm is designed,so that it can simultaneously encode the continuous and the discrete variables.Then,the fitness function of the integrated learning particle swarm optimization algorithm with multi-stage and multi-objective characteristics is defined to minimize the number of virtual samples while ensuring the generalization performance of the model.Finally,a multi-objective hybrid optimization task is generated for virtual samples to improve the integrated learning particle swarm optimization algorithm,so that it can adapt to the variable dimension characteristics of the virtual sample optimization process and improve the convergence speed.At the same time,the comprehensive evaluation index and distribution similarity index are proposed for evaluating the quality of virtual samples by referring to metric learning for the first time.In this paper,two benchmark datasets and an actual industrial dataset are used to verify the effectiveness and superiority of the proposed method.
关 键 词:小样本建模 虚拟样本生成 混合优化 多目标粒子群优化 分布相似度
分 类 号:TP18[自动化与计算机技术—控制理论与控制工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.145