检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:胡胜 王品鉴 赵小惠[1] 张刚 HU Sheng;WANG Pinjian;ZHAO Xiaohui;ZHANG Gang(School of Mechanical and Electrical Engineering,Xi'an Polytechnic University,Xi'an 710048)
机构地区:[1]西安工程大学机电工程学院,陕西西安710048
出 处:《机械设计》2024年第3期82-90,共9页Journal of Machine Design
基 金:国家自然科学基金资助项目(72001166);陕西省自然科学基础研究计划项目(2022JQ-721)。
摘 要:纺纱生产中涉及的过程参数繁多,彼此相互关联且存在冗余,针对过程参数间相关性带来的质量指标难以精确预测与控制等问题,文中提出一种基于等距特征映射(Isometric Mapping,Isomap)的纺纱生产过程决策参数特征提取方法。首先,通过灰色关联分析计算过程参数与纱线质量指标间的灰色关联度,筛选出对产品质量指标影响较大的过程参数作为决策参数;然后,采用Isomap算法对决策参数进行特征提取降维,获得彼此独立的低维决策参数特征空间,将其输入到粒子群优化向量机模型(PSO-SVM)中验证所提出算法的特征提取效果;最后,通过算例进行验证,结果显示提出的方法可采用相较于原数据更少的特征空间维度获取更佳的预测效果。The spinning production involves many process parameters,which are interrelated and redundant.Since it is diffi-cult to accurately predict and control the quality indicators caused by the correlation between the process parameters,in this arti-cle a feature-extraction method is proposed based on Isometric Mapping(Isomap)for the spinning-production process decision pa-rameters.Firstly,the grey correlation analysis is used to rank the grey correlation between the process parameters and the yarn quality indicators;efforts are made to select the process parameters that have a significant impact on the product quality indicators as the decision parameters.Furthermore,these decision parameters are used for feature extraction and dimensionality reduction by means of Isomap;efforts are made to obtain the independent low-dimensional decision-parameter feature spaces and input them in-to the Particle Swarm Optimization Vector Machine Model(PSO-SVM),so as to verify this method's feature-extraction perform-ance.Finally,the numerical examples are used to verify the results;it is shown that this method has better prediction perform-ance by utilizing fewer feature space dimensions compared to the original data.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.133.141.1