检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:杨剑锋[1,3] 崔少红[1] 段家琦 王宁 YANG Jianfeng;CUI Shaohong;DUAN Jiaqi;WANG Ning(Business School,Zhengzhou University,Zhengzhou 450015,China;School of Management Engineering,Zhengzhou University,Zhengzhou 450015,China;International Institute for Quality Development,Zhengzhou University,Zhengzhou 450015,China)
机构地区:[1]郑州大学商学院,河南郑州450015 [2]郑州大学管理学院,河南郑州450015 [3]郑州大学国际质量发展研究院,河南郑州450015
出 处:《工业工程》2024年第2期98-106,157,共10页Industrial Engineering Journal
基 金:国家自然科学基金资助项目(U1904211);国家社会科学基金资助项目(20BTJ059);河南省软科学研究项目(232400411135);郑州大学精尖学科支持项目(XKLMJX202201)。
摘 要:随着智能制造技术的发展和客户个性化需求的增加,多品种小批量生产方式逐渐成为制造业的主流。面向大批量生产、以统计过程控制为核心的质量管理方式并不适用于小批量生产。针对复杂生产过程存在参数多、非线性和交互作用的问题,提出利用深度迁移学习的方式将历史生产数据作为源域迁移至小样本目标产品数据进行质量预测。首先,通过合成少数类过采样技术(synthetic minority over-sampling technique,SMOTE)和改进的核主成分分析(improved kernel principal component analysis,IKPCA)算法筛选源域和目标域的可迁移特征,这不仅兼顾了特征重要性和可迁移性,还减少了“负迁移”,提高了模型泛化能力;然后,采用结合通道注意力机制的卷积神经网络SeNet构建基于深度迁移学习的质量预测模型。仿真结果表明,随着目标域样本的增加,所提方法的预测准确性明显优于广泛采用的支持向量机建模方法。同时,所提可迁移特征筛选方法显著提高了深度迁移学习的质量预测效果,为复杂的小批量生产过程质量保证提供了新方法。With the development of intelligent manufacturing technology and the growing demand for personalization,multi-variety and small-batch production has gradually become the mainstream in the manufacturing industry.In this condition,traditional quality management methods which focus on large-batch production and statistical process control are not suitable for small-batch production.In complex production processes,it also exists challenges such as numerous parameters,non-linearity and interactions.To this end,a deep transfer learning method is adopted to predict the quality of target products using small sample data transferred from massive historical production data.First,by using the synthetic minority over-sampling technique(SMOTE)algorithm and an improved kernel principal component analysis(KPCA)algorithm,transferable features from both the source and target domains are selected,balancing feature importance and transferability.It also mitigates negative transfer issues and enhances the generalization capability of the model.Then,a quality prediction model based on deep transfer learning is built using a convolutional neural network,i.e.,SeNet,which incorporates a channel attention mechanism.Simulation results demonstrate that as the number of target domain samples increases,the proposed method is significantly superior to prediction accuracy compared with the widely adopted support vector machine modeling method.Additionally,the proposed selection method of transferable features significantly enhances the quality prediction performance of deep transfer learning,providing a novel approach to ensuring the quality of complex small-batch production processes.
关 键 词:小批量生产质量预测 深度迁移学习 SMOTE IKPCA SeNet
分 类 号:F407.67[经济管理—产业经济] TP181[自动化与计算机技术—控制理论与控制工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.244