检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:徐坚 XU Jian(Key Laboratory of Educational Informatization for Nationalities,Yunnan Normal University,Kunming 650500,China;School of Information Engineering,Qujing Normal University,Qujing 655011,China)
机构地区:[1]云南师范大学民族教育信息化教育部重点实验室,云南昆明650500 [2]曲靖师范学院信息工程学院,云南曲靖655011
出 处:《智能系统学报》2024年第2期420-428,共9页CAAI Transactions on Intelligent Systems
基 金:国家自然科学基金项目(62166050);云南师范大学2020年研究生科研创新基金项目(YSDBS178)。
摘 要:问题自动生成是人工智能领域的一项技术,其目标是根据输入的文本模拟人类的能力,自动生成相关问题。目前的问题自动生成研究主要基于通用数据集生成问题,缺乏专门针对教育领域的问题生成研究。为此,专注于面向中学生的问题自动生成进行研究。构建一个专门为问题生成模型训练需求而设计的数据集RACE4QG,以满足中学生教育领域的独特需求;开发一个端到端的问题自动生成模型,该模型训练于数据集RACE4Q,并采用改进型“编码器-解码器”方案,编码器主要采用两层双向门控循环单元,其输入为单词和答案标记的嵌入表示,编码器的隐藏层采用门控自注意力机制获得“文章和答案”的联合表示后,再输入到解码器生成问题。试验结果显示,该模型优于最优基线模型,3个评价指标BLEU-4、ROUGE-L和METEOR分别提高了3.61%、1.66%和1.44%。Automatic question generation is a technology in the field of artificial intelligence.Its goal is to simulate human capabilities and automatically generate relevant questions based on input text.Current research on automatic question generation is mainly based on generating questions from general datasets,and there is a lack of research on question generation specifically targeting the field of education.To this end,this article focuses on the automatic generation of questions for middle school students.First,this article constructs a dataset RACE4QG specifically designed for the training needs of question generation models to meet the unique needs of the field of middle school student education.Secondly,we developed an end-to-end automatic problem generation model,which was trained on the RACE4Q dataset.In the improved"encoder-decoder"scheme,the encoder mainly adopts a two-layer bidirectional gated recurrent unit,whose input is the word embedding and answer-tagging embedding,and the hidden layer of the encoder adopts the gated self-attention mechanism to obtain the passage-answer representation,which is then fed to the decoder to generate questions.The experimental results show that the model in this paper is better than the optimal baseline model,and the three evaluation indicators BLEU-4,ROUGE-L,and METEOR are improved by 3.61,1.66,and 1.44 points,respectively.
关 键 词:语义图 数据集 自动问题生成模型 编码器 解码器 答案标记 图注意力网络 门控循环单元
分 类 号:TP311[自动化与计算机技术—计算机软件与理论]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.81