基于改进SVM的无线通信网络干扰检测方法  

Interference detection method of wireless communication network based on improved SVM

在线阅读下载全文

作  者:马占书 胡延伟 MA Zhanshu;HU Yanwei(Communication Signal Engineering Bureau Group Beijing Research and Design Experimental Center Co.,Ltd,Bei-jing 100070 China;NanChong Vocational And Technical College,Sichaun nanchong 637100 China)

机构地区:[1]国家无线电监测中心检测中心,北京石景山区100041 [2]南充职业技术学院,四川南充637100

出  处:《长江信息通信》2024年第3期49-51,共3页Changjiang Information & Communications

摘  要:针对现有干扰检测方法在应用到无线通信网络中,存在检测精度低,检测到的干扰信号波形与实际不一致的问题,引入改进SVM,开展对无线通信网络干扰检测方法的设计研究。先确定多种类型干扰信号的时域表达式,实现对无线通信网络干扰信号的识别。然后利用改进SVM,构建无线通信网络干扰检测模型。最后,为优化干扰检测效果,对通信信号参数重构,通过重构的信号,再次实现干扰检测。通过对比实验证明,新的检测方法在实际应用中可以实现对干扰信号高精度检测,得到的干扰信号波形与实际情况相符,可充分满足无线通信网络高精度干扰检测要求。In view of the problems of low detection accuracy of the existing interference detection mcthod and inconsistency betwccn the detected interference signal and the actual situation,improved SVM is introduced to carry out the design research of interference detection method in wireless communication network.The time domain expression of many types of interference signals is determined to identify the interference signal of wireless communication network.Then the improved SVM is used to construct the intcrference detection model.Finally,in order to optimize the interference detction effect,the communication signal parameters are reconstructed,and the interference detection is realized again through the reconstructed signal.Through comparative experiments,it is proved that the new detection mcthod can realize highprecision detcction of interference signals in practical application,and the waveform of interference signals obtained is consistent with the actual situation,and can fully meet the requirements of high-precision interference detection in wireless communication network.

关 键 词:改进SVM 通信 检测 干扰 网络 无线 

分 类 号:TN911[电子电信—通信与信息系统]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象