不同产地葛根药材的高光谱结合人工神经网络鉴别  

Hyperspectral Combined with Artificial Neural Network to Identify Pueraria Lobata Medicinal Materials from Different Origins

在线阅读下载全文

作  者:郭毅秦 焦龙[1] 娄俊豪 沈瑞华 钟汉斌[1] 熊迅宇[1] Guo Yiqin;Jiao Long;Lou Junhao;Shen Ruihua;Zhong Hanbin;Xiong Xunyu(College of Chemistry and Chemical Engineering,Xi’an Shiyou University,Xi’an 710065,China)

机构地区:[1]西安石油大学化学化工学院,陕西西安710065

出  处:《云南化工》2024年第4期92-94,共3页Yunnan Chemical Technology

基  金:国家自然科学基金项目(No.211723003);陕西省教育厅青年创新团队建设科研计划项目(No.21JP097、22JP064);大学生创新创业训练计划项目(No.202210700010);川庆钻探公司-西安石油大学致密油气藏勘探开发研究中心科技项目(No.CQXA-2023-05);西安石油大学科研创新团队(2019QNKYCXTD17)资助。

摘  要:采用高光谱结合人工神经网络(ANN)方法建立了不同产地葛根药材的鉴别方法。采集6种不同产地葛根药材的高光谱数据,使用Savitzky-Golay平滑滤波对原始光谱数据预处理,结合人工神经网络方法建立葛根产地鉴别模型。结果表明,与未经预处理的光谱数据模型准确率相比,Savitzky-Golay平滑滤波后建立的ANN模型识别测试集分类准确率达到99.00%。因此,高光谱技术结合人工神经网络能够实现快速、准确地鉴别葛根产地,是一种很有前景的葛根药材鉴别方法。The hyperspectral combined with artificial neural network(ANN)method was used to establish the identification method of Pueraria lobata from different origins.The hyperspectral data of six kinds of Pueraria lobata medicinal materials from different origins were collected,and the original spectral data were preprocessed by Savitzky-Golay smooth filtering,and the origin identification model of Pueraria lobata was established by artificial neural network method.The results show that compared with the accuracy of the unpreprocessed spectral data model,the classification accuracy of the ANN model established after Savitzky-Golay smoothing filtering reaches 99.00%.The results showed that hyperspectral technology combined with artificial neural network could quickly and accurately identify the origin of Pueraria lobata,which was a promising method for identifying Pueraria lobata.

关 键 词:葛根 高光谱 人工神经网络 产地鉴别 

分 类 号:O657[理学—分析化学] R286[理学—化学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象