检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:周朝阳[1,2] 贺艳菊 夏岭梅[1] 闵昭浩 Zhou Zhaoyang;He Yanju;Xia Lingmei;Min Zhaohao(Hubei University Library,Wuhan Hebei 430062;School of History and Culture,Hubei University,Wuhan Hebei 430062)
机构地区:[1]湖北大学图书馆,湖北武汉430062 [2]湖北大学历史文化学院,湖北武汉430062
出 处:《情报探索》2024年第5期1-8,共8页Information Research
基 金:湖北省高校图工委科研基金研究项目“基于馆情知识图谱的智能咨询系统研究”(项目编号:2021-ZD-04)成果之一。
摘 要:[目的/意义]提高问句相似性计算的准确性,对改善图书馆智能咨询的实际效果具有重要作用。[方法/过程]引入特征词在问句之间的语义相关性指标,提出了融合词性与语义相关性的问句相似性计算方法。首先构建咨询领域专业词典以增强问句处理的业务针对性,然后提出特征词词性权重和语义相关性权重度量方法,并融合两者度量词语在问句中的作用以构建问句语义表征向量,最后采用余弦函数计算问句相似度。[结果/结论]实验表明综合词性与语义相关性特征能有效识别问句中的核心特征词,本文提出的问句相似性计算方法比传统方法具有更高的ACC@1和ACC@3准确率。[Purpose/significance]Improving the accuracy of question similarity calculation plays an important role in improving the practical effectiveness of library intelligent consulting.[Method/process]Introducing the semantic correlation index of feature words between questions,this paper proposes a question similarity calculation method that combines part-of-speech and semantic correlation.Firstly,the paper constructs a professional dictionary in the consuulting field to enhance the business pertinence of question processing.Then,it proposes a feature word part-of-speech weight and semantic correlation weight measurement method,and combines the above two to measure the role of words in the question to construct a question semantic representation vector.Finally,it uses the cosine function to calculate the quetion similarity.[Result/conclusion]Experiments show that the combination of part-of-speech and semantic correlation features can effectively identify the core feature words in questions.The proposed method has a higher accuracy rate of ACC@1 and ACC@3 than the traditional method.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:18.191.74.140