检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:郭嘉辉 侯月婷 丁磊[1] 金朝阳 Guo Jiahui;Hou Yueting;Ding Lei;Jin Zhaoyang(Key Laboratory of Power System Intelligent Dispatch and Control,Shandong University,Jinan 250061,China)
机构地区:[1]山东大学电网智能化调度与控制教育部重点实验室,济南250061
出 处:《国外电子测量技术》2024年第4期152-161,共10页Foreign Electronic Measurement Technology
摘 要:为了解决异常数据严重影响电力系统状态估计性能的问题,提出了一种基于支持向量机(SVM)的电力系统预测辅助状态估计(FASE)多类型数据异常检测方法。首先,针对传统FASE的预测准确率欠佳的问题,提出了基于极限学习机的FASE方法,并利用SVM并基于预测数据、量测数据与估计值,实现了对坏数据、负荷突变和单相接地等多种类型的数据异常检测。其次,针对惩罚因子和核函数参数会影响分类精度的问题,提出采用灰狼算法对SVM参数进行优化,在兼顾计算速度的同时提高了数据异常检测的准确率。最后,在IEEE 33和丹麦DTU 7K 47节点主动配电网系统上进行仿真测试,所提方法在正常工况下提升26.08%与26.76%,计算速度提升46.05%,在数据异常情况下准确率综合提升32.04%与29.27%,结果表明,所提方法具备较强的通用性与实时性,可以有效地检测电力系统中各种类型的数据异常,并提高状态估计的性能。To address performance issues in state estimation caused by anomalous data in power systems,this paper proposes a multi-type data anomaly detection method for power system state estimation based on support vector machine(SVM).Firstly,extreme learning machine is proposed to enhance prediction accuracy in forecasting-aided state estimation(FASE).Then,SVM is utilized to detect various types of data anomalies,including bad data,load changes,and single-phase grounding,by incorporating prediction data,measurement data,and estimated values.To optimize SVM parameters and improve classification accuracy,the grey wolf algorithm is suggested to tackle the issue of penalty factor and kernel function parameters.Finally,simulations are conducted on real distribution systems,specifically the IEEE 33 and DTU 7K 47 systems,using data from different scenarios.The proposed method achieves accuracy improvement of 26.08%and 26.76%and calculating speed improvement of 46.05%under normal operating conditions,and a comprehensive enhancement of 32.04%and 29.27%in accuracy under data abnormality scenarios.The results demonstrate that the proposed method is highly generalizable and real-time,effectively detects various types of data anomalies,and enhances the performance and accuracy of state estimation.
关 键 词:预测辅助状态估计 异常检测 极限学习机 支持向量机 灰狼算法
分 类 号:TM73[电气工程—电力系统及自动化]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.148.212.53