检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:廖舒怀 王凯[2] 宋健[2] 解福祥[2] 王名声 龚中良[1] Liao Shuhuai;Wang Kai;Song Jian;Xie Fuxiang;Wang Mingsheng;Gong Zhongliang(School of Mechanical and Electrical Engineering,Central South University of Forestry and Technology,Changsha,410004,China;School of Machinery and Automation,Weifang University,Weifang,261061,China)
机构地区:[1]中南林业科技大学机电工程学院,长沙市410004 [2]潍坊学院机械与自动化学院,山东潍坊261061
出 处:《中国农机化学报》2024年第5期232-238,共7页Journal of Chinese Agricultural Mechanization
基 金:山东省重点研发计划项目(2019GNC106144)。
摘 要:针对人工测量苗圃冠层参数费时费力,无法快速提取果树冠层参数的问题,提出一种基于环境点云识别算法的树木冠层信息提取方法。首先利用LiDAR-IMU紧耦合里程计进行点云矫正和特征点提取,在建图中使用旋转约束解决Z轴偏移问题,完成测量区域的环境重建;将点云地图传输至后台工作站后,使用欧式聚类和3D-FV-DNNs算法对树木点云进行分割与识别;最后在找到第一主枝后利用立方体素法实现冠层体积建模,采用二维栅格法提取冠层面积参数。试验表明:本文采用的建图算法能较高精度地重建完整果园环境,基于DNN深度学习分类器的苗圃识别方法获取的P-R曲线的Bet值比SVM与RF分类器所获取的数值高出0.064 1与0.099 9,此外树冠体积与面积的R^(2)与RMSE分别为0.746 77、0.697 8以及0.097 54、0.076 77。表明本文算法测得的冠层参数与人工测量值有强相关性,为果园精细化管理提供重要支撑。Aiming at the problem that manual measurement of nursery canopy parameters was time-consuming and labor-intensive,and fruit tree canopy parameters could not be quickly extracted,a tree canopy information extraction method based on environmental point cloud recognition algorithm was proposed in this paper.Firstly,the LiDAR-IMU tightly coupled odometer was used for point cloud correction and feature point extraction,and the rotation constraint was used to solve the Z-axis migration problem in the construction map to complete the environment reconstruction of the measurement area.After the point cloud map was transferred to the background workstation,European clustering and 3D-FV-DNNs algorithm were used to segment and identify the tree point cloud.Finally,after finding the first main branch,the canopy volume was modeled by cubic voxel method,and the canopy area parameters were extracted by two-dimensional raster method.The test showed that the mapping algorithm adopted in this paper could reconstruct the complete orchard environment with high accuracy.The Bet value of P-R curve obtained by the nursery recognition method based on DNN deep learning classifier was 0.0641 and 0.0999 higher than that obtained by SVM and RF classifier.In addition,R 2 and RMSE of crown volume and area were 0.74677 and 0.6978,0.09754 and 0.07677,respectively.The results showed that the canopy parameters measured by the proposed algorithm were strongly correlated with the manual measurements,which provided important support for the fine management of orchards.
关 键 词:移动机器人 点云环境地图 深度学习 点云识别 树冠参数
分 类 号:TP242[自动化与计算机技术—检测技术与自动化装置] TN958.98[自动化与计算机技术—控制科学与工程] S24[电子电信—信号与信息处理]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.222