双层次装配语义智能识别与设置方法  

An Intelligent Approach to Identifying and Setting Dual-Level Assembly Semantics

在线阅读下载全文

作  者:苗洁 曹伟娟 潘万彬 王毅刚 Miao Jie;Cao Weijuan;Pan Wanbin;Wang Yigang(School of Media and Design,Hangzhou Dianzi University,Hangzhou 310018;School of Computer Science,Hangzhou Dianzi University,Hangzhou 310018)

机构地区:[1]杭州电子科技大学数字媒体与艺术设计学院,杭州310018 [2]杭州电子科技大学计算机学院,杭州310018

出  处:《计算机辅助设计与图形学学报》2024年第3期423-434,共12页Journal of Computer-Aided Design & Computer Graphics

基  金:国家自然科学基金(61702147);浙江大学计算机辅助设计与图形系统全国重点实验室开放课题(A2328,A2211).

摘  要:作为装配体模型中的重要内容,即装配语义,目前大多采用人工交互的方式进行设置,过程往往费时低效.为解决此问题,提出一种双层次装配语义智能识别与设置方法.首先,改进现有的图注意力网络,将其拓展为双层次识别网络,实现透过各种几何形状,智能识别每个零件模型表面的典型运动副接口;其次,改进现有反向传播人工神经网络的网络结构以提高网络性能,智能识别每个零件模型所有运动副接口上蕴含的装配约束类型及关联的几何实体;最后,基于上述识别的信息,任意2个零件模型之间自动搜索配对的运动副接口和装配约束几何实体,并快速且半自动地设置它们之间完整的装配语义.为有效地支持上述网络模型训练,构建了一个包含2787个CAD零件模型的数据集.实验表明,该方法对运动副接口和装配约束的类型及关联几何实体识别的准确率均超过93.0%.同时,与现有的相关工作相比,所提方法具有有效地适用于快速设置各种装配体模型其装配语义的优势和潜力.Assembly semantics,as a vital content of an assembly model,is mainly set interactively by designers,which is usually time-consuming and inefficient.To account for this,an intelligent approach to identifying and setting dual-level assembly semantics is proposed.First,the existing graph attention network is improved where it is extended to a dual-level identification network,identifying all typical kinematic pair interfaces on each part model that have various geometric shapes but consistent kinematic semantics.After that,the existing back-propagation artificial neural network structure is modified for improving performance,recognizing all as-sembly constraint types(as well as their associated geometric entities)that are embodied in each kinematic pair interface.Based on the above-identified information,the mating kinematic pair interfaces and mating assem-bly-constraint geometric entities between arbitrary two-part models can be searched automatically,and the full assembly semantics between them can be rapidly and semi-automatically set.To train the aforementioned net-work,a dataset containing 2787 CAD models is generated.Experiments show that the accuracy of identification on the kinematic pair interface or on the assembly constraint type(as well as its associated geometric entity)is more than 93.0%.Besides,compared to recent related works,the proposed approach also has some advantages and potentials to set the assembly semantics for various assembly models rapidly.

关 键 词:装配语义 运动副 装配约束 图注意力网络 人工神经网络 

分 类 号:TP391.41[自动化与计算机技术—计算机应用技术]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象