位移无拖曳控制的动力学协调条件研究  

Study on Dynamic Coordination Condition of Displacement Drag-free Control

在线阅读下载全文

作  者:苟兴宇[1,2] 王丽娇 许现民[3] 邹奎 蒋庆华 GOU Xingyu;WANG Lijiao;XU Xianmin;ZOU Kui;JIANG Qinghua(Beijing Institute of Control Engineering,Beijing 100094,China;National Key Laboratory of Space Intelligent Control,Beijing 100094,China;Key Laboratory of Systems and Control,Academy of Mathematics and Systems Science,Chinese Academy of Sciences,Beijing 100190,China)

机构地区:[1]北京控制工程研究所,北京100094 [2]空间智能控制技术全国重点实验室,北京100094 [3]中国科学院数学与系统科学研究院科学与工程计算国家重点实验室,北京100190

出  处:《宇航学报》2024年第4期540-549,共10页Journal of Astronautics

基  金:基础加强计划重点基础研究项目。

摘  要:针对位移无拖曳控制的可实现性问题及避免推力饱和问题,首先基于位移无拖曳控制动力学方程,推导出位移无拖曳控制系统中连续可变推力推进子系统的最大推力需要满足的基本动力学协调条件。进一步由位移无拖曳控制动力学方程退化得到的切换动力学方程,推导出负刚度加速度函数为线性及非线性函数两种情形下的让步动力学协调条件。针对让步动力学协调条件开展了仿真比对,结果表明,强非线性情形下的让步动力学协调条件比退化的线性情形更加严苛。最后通过分析给出位移无拖曳控制避免推力饱和的、定性的动力学协调条件,并得到仿真校验,即:检验质量初始状态及指令状态应在让步动力学协调条件区域内靠近负刚度力零位,开环系统时间延迟尽可能短,并且控制带宽应折中选择。Aiming at the feasibility and the avoidance of thrust saturation of displacement drag-free control,the basic dynamic coordination conditions for the maximum thrust of the continuously variable thrust propulsion subsystem in a dragfree displacement control system are derived firstly based on the dynamic equation of drag-free displacement control.Further,the switching dynamics equation derived from the degradation of the displacement frag-free control is used to derive the compromise dynamics coordinate conditions for two scenarios:linear and nonlinear negative stiffness acceleration functions.Simulation comparison was conducted on the compromise dynamics coordination conditions,and the results showed that the conditions under strong nonlinear condition is more stringent than those under degraded linear condition.Finally,a qualitative dynamic coordination conditions for displacement drag-free control to avoid thrust saturation is analyzed,and simulation verification is obtained,those are,the initial quality state and command state should be close to the negative stiffness force zero position within the compromise dynamics coordinate condition area,the open-loop system time delay should be as short as possible,and the control bandwidth should be selected in a compromise.

关 键 词:位移无拖曳控制 动力学协调条件 切换动力学方程 HAMILTON函数 检验质量状态初值 

分 类 号:V448.2[航空宇航科学与技术—飞行器设计]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象