检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:鲁娟[1] 何鑫 李明海 邓琨升 LU Juan;HE Xin;LI Minghai;DENG Kunsheng(Design and Research Institute Co.,Ltd.,Xi’an University of Architecture and Technology,Xi’an 710055,China;School of Mechanical and Electrical Engineering,Xi’an University of Architecture and Technology,Xi’an 710055,China;College of Information and Control Engineering,Xi’an University of Architecture and Technology,Xi’an 710055,China)
机构地区:[1]西安建筑科技大学设计研究总院有限公司,陕西西安710055 [2]西安建筑科技大学机电工程学院,陕西西安710055 [3]西安建筑科技大学信息与控制工程学院,陕西西安710055
出 处:《现代建筑电气》2024年第4期45-50,62,共7页Modern Architecture Electric
摘 要:在建筑光伏一体化技术的背景下,准确预测屋顶光伏输出功率对于优化建筑能源管理和确保光伏电力的稳定并网至关重要。提出了一种基于IPSO-BPNN的楼宇屋顶光伏出力功率超短期预测模型,该模型引入Sine混沌序列初始化和精英粒子反向学习策略,改进了基本的PSO算法,并利用此算法对基本BPNN模型的超参数进行优化,从而实现了对屋顶光伏出力功率更加准确的预测。预测模型性能测试实验表明,所提出的IPSO-BPNN预测模型在不同季节的预测准确性和稳定性都有显著提高。该模型能够准确预测屋顶光伏发电功率,为建筑光伏一体化系统的稳定运行和能源管理提供切实可行的解决方案。In the context of building-integrated photovoltaic technology,accurate prediction of rooftop photovoltaic output power is crucial for optimizing building energy management and ensuring the stable grid connection of PV electricity.Based on this,this paper proposes a rooftop PV output power ultra-short-term prediction model based on improved particle swarm optimization and backpropagation neural network(IPSO-BPNN).This model improves the basic particle swarm optimization(PSO)algorithm by introducing Sine chaotic sequence initialization and elite particle reverse learning strategy,and utilizes this algorithm to optimize the hyperparameters of the basic BPNN model,thereby achieving more accurate prediction of rooftop PV output power.Performance testing experiments of the prediction model demonstrate significant improvements in prediction accuracy and stability across different seasons.The proposed IPSO-BPNN model accurately forecasts rooftop PV electricity generation,providing a practical solution for the stable operation and energy management of building-integrated photovoltaic systems.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.149.239.180