红外图像量化影响目标检测性能实验研究  

Experimental Study on the Impact of Infrared Image Quantization on Object Detection Performance

在线阅读下载全文

作  者:徐文辉[1] 钟胜[1,2] 邹旭[1,2] 何顶新[1] XU Wenhui;ZHONG Sheng;ZOU Xu;HE Dingxin(School of Artificial Intelligence and Automation,Huazhong University of Science and Technology,Wuhan 430074,China;National Key Laboratory of Multispectral Information Intelligent Processing Technology,Huazhong University of Science and Technology,Wuhan 430074,China)

机构地区:[1]华中科技大学人工智能与自动化学院,武汉430074 [2]华中科技大学多谱信息智能处理技术全国重点实验室,武汉430074

出  处:《实验室研究与探索》2024年第5期15-20,共6页Research and Exploration In Laboratory

基  金:华中科技大学2023年实验技术研究项目(2023184018)。

摘  要:为了研究不同红外图像量化方法对目标检测网络性能影响的差异,将红外图像量化对深度学习目标检测网络性能影响的研究和分析设计成教学实验。实验内容涉及图像处理、模式识别、计算机视觉等多个专业课程。实验过程包括红外图像量化、网络模型训练、测试分析等多个环节,贯穿基于深度学习的高层视觉任务开发全流程。该实验紧跟学科前沿,促进学生科研能力和综合素质的培养。In order to investigate the impact of different quantization methods on the performance of the deep learning object detection network,a research-oriented teaching experiment is designed,which involves the research and analysis of the impact of infrared image quantization on deep learning object detection performance.The experiment content covers image processing,pattern recognition,computer vision,and so on.The experiment process involves several stages such as infrared image quantization,network model training,and testing analysis,i.e.,it runs through the entire process of developing high-level visual tasks based on deep learning.This experiment keeps experimental teaching up with the subject frontier,promoting the cultivation of students'research ability and comprehensive quality.

关 键 词:红外图像量化 目标检测 人工智能 教研协同 

分 类 号:G642.423[文化科学—高等教育学] TP274.5[文化科学—教育学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象