检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:徐萌 王思涵 郭仁忠 贾秀萍[4] 贾森[1] Xu Meng;Wang Sihan;Guo Renzhong;Jia Xiuping;Jia Sen(College of Computer Science and Software Engineering,Shenzhen University,Shenzhen,Guangdong 518060;School of Architecture&Urban Planning,Shenzhen University,Shenzhen,Guangdong 518060;Research Institute for Smart Cities,Shenzhen University,Shenzhen,Guangdong 518060;School of Engineering and Information Technology,University of New South Wales,Canberra,Australia 2612)
机构地区:[1]深圳大学计算机与软件学院,广东深圳518060 [2]深圳大学建筑与城市规划学院,广东深圳518060 [3]深圳大学智慧城市研究院,广东深圳518060 [4]新南威尔士大学工程与信息技术学院,澳大利亚堪培拉2612
出 处:《计算机研究与发展》2024年第6期1585-1607,共23页Journal of Computer Research and Development
基 金:国家自然科学基金项目(42271336,42371431,62271327,41971300);广东省基础与应用基础研究基金项目(2024A1515011079,2022A1515011290);广东省普通高校创新团队项目(2023KCXTD029);深圳市科技计划项目(RCJC20221008092731042,JCYJ20220818100206015,KQTD20200909113951005)。
摘 要:遥感影像是目前可以大范围获取海洋、大气和地球表面信息的数据资源,在农业、军事和城市规划等各个领域发挥重要作用.但是在影像观测过程中会受到云雾等污染因素的影响,导致遥感影像信息缺失,在实际应用中造成巨大的资源损失和浪费.因此,如何对遥感影像云雾覆盖区域进行检测并对其进行校正和修复是国内外专家广泛关注的具有挑战性的难点问题.全面综述其研究进展,总结了现有遥感影像云层检测和去除的挑战;根据是否利用深度学习技术将云检测方法分为2大类,根据是否利用辅助影像将云去除方法分为3大类,依照不同方法特性系统分析和对比了其基本原理和优缺点;基于上述总结在2组遥感影像公开数据集上分别对4种云检测、4种薄云去除和4种厚云去除方法进行了性能评测;最后讨论了本领域目前仍存在的问题,对未来研究方向进行了预测,希望能够对该领域研究人员提供有价值的参考.Remote sensing images are the data resource that can acquire information about the ocean,atmosphere,and the earth’s surface,and have been widely applied in many fields,such as agriculture,military,and urban planning.However,clouds and hazes are inevitable factors when collecting images from satellites,resulting in the loss of information and causing a huge waste of data resources in practical applications.Therefore,how to detect and remove clouds from remote sensing images is a challenging and difficult task that draws a lot of experts’attention.We comprehensively review current research progress and summarize the challenges of cloud detection and removal in remote sensing images.Cloud detection methods are divided into two categories based on whether using deep learning technology,and cloud removal methods are divided into three categories based on whether auxiliary images are used.Then,according to the characteristics of different methods,these methods are reviewed and analyzed systematically,including their advantages and disadvantages,respectively.Afterward,four cloud detection,four thin cloud removal and four thick cloud removal methods are evaluated on two remote sensing datasets.Finally,we discuss future challenges and predict future research directions.This review paper can provide valuable advice to scientists who are involved in remote sensing image processing.
分 类 号:TP391[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.3