随机反应扩散方程的随机吸引子的高阶稳定性  

Higher-order Stability of Attractors for Stochastic Reaction-Diffusion Equation

在线阅读下载全文

作  者:李志 赵文强[1] LI Zhi;ZHAO Wenqiang(School of Mathematics and Statistics,Chongqing Technology and Business University,Chongqing 400067,China)

机构地区:[1]重庆工商大学数学与统计学院,重庆400067

出  处:《广西师范大学学报(自然科学版)》2024年第3期151-158,共8页Journal of Guangxi Normal University:Natural Science Edition

基  金:国家自然科学基金(11871122);重庆市自然科学基金(cstc2019jcyj-msxmX0115)。

摘  要:本文研究带加性白噪声的随机反应扩散方程的随机吸引子关于噪声强度的稳定性。首先,在非线性函数满足更一般条件下,在初始空间L^(2)(R^(N))中获得随机微分方程的解收敛到确定方程的解,从而得到随机吸引子的上半连续性;然后,利用非线性分解和差分估计,证明L^(p)(R^(N))(p>2)空间中解的收敛性和随机吸引子的上半连续性,其中p是非线性函数的增长指数。The stability of random attractors of the stochastic reaction-diffusion equation with additive white noise is studied.First,with a general assumption on the nonlinear term,the solutions of the stochastic differential equation converge to the solutions of the deterministic equation in the initial space L^(2)(R^(N)),and the upper semi-continuity of the random attractors is obtained.In particular,by using the nonlinear decomposition and the difference estimation,we technically obtain the convergence of solutions and the upper semi-continuity of random attractors in L^(p)(R^(N))(p>2),where p is the growth index of the nonlinear function.

关 键 词:随机反应扩散方程 随机吸引子 上半连续性 加性噪声 稳定性 

分 类 号:O192[理学—数学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象