基于GA-BP对叶片点云数据修补及逆向建模  被引量:1

Point Cloud Data Repair and Reverse Modeling of Blade Based on GA-BP

在线阅读下载全文

作  者:赵铁军[1] 张庆鑫 ZHAO Tiejun;ZHANG Qingxin(School of Mechanical Engineering,Shenyang University of Technology,Shenyang 110000,China)

机构地区:[1]沈阳工业大学机械工程学院,沈阳110000

出  处:《机械工程师》2024年第6期15-17,共3页Mechanical Engineer

摘  要:为了获得某型号发动机叶片的三维建模及其相关数据,给逆向设计提供一些零件的三维建模尺寸。由于获得建模的三维点云数据时必然会产生孔洞,文中使用基于Genetic Algorithm(基因遗传算法)优化的Back Propagation(反向传播)神经网络(又称GA-BP神经网络)作为一个回归预测算法,来对产生的散乱点云孔洞加以修复和点云处理,最后再通过Geomagic Wrap对某型号发动机叶片进行逆向建模。通过对比BP神经网络可知,GA-BP修补孔洞的误差明显降低,满足对三维模型精度较高的要求,可应用于逆向工程。To obtain the 3D modeling of a certain type of engine blade and its related data,the 3D modeling dimensions of some parts are provided for reverse design.Due to the inevitable creation of holes when obtaining 3D point cloud data for modeling,this paper uses back propagation neural network(also known as GA-BP neural network)optimized based on genetic algorithm as a regression prediction algorithm to repair the generated random point cloud holes,then carry out point cloud processing,and finally uses Geomagic Wrap to build reverse modeling of an engine blade.By comparing with BP neural network,it can be seen that the error of hole repair by GA-BP is significantly reduced,which meets the requirement of high accuracy of 3D model and can be applied to reverse engineering.

关 键 词:逆向工程 点云处理 GA-BP神经网络 Geomagic软件 

分 类 号:TP23[自动化与计算机技术—检测技术与自动化装置]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象