基于粒子群优化自抗扰控制的舵系统研究  被引量:1

Research on Rudder Systems Based on Particle Swarm Optimization Active Disturbance Rejection Control

在线阅读下载全文

作  者:张钧禹 马武举 谢虎 ZHANG Junyu;MA Wuju;XIE Hu(No.710 R&D Institute,CSSC,Yichang 443003,China;Qingjiang Innovation Center,Wuhan 430076,China)

机构地区:[1]中国船舶集团有限公司第七一〇研究所,湖北宜昌443003 [2]清江创新中心,湖北武汉430076

出  处:《数字海洋与水下攻防》2024年第2期236-244,共9页Digital Ocean & Underwater Warfare

摘  要:舰载诱饵干扰弹作为重要的防御性武器,其舵系统对保证飞行控制系统的动态品质和飞行安全具有核心作用。传统的PID控制算法在抗干扰能力和快速响应能力方面存在局限性。为此引入粒子群优化技术并集成自抗扰和智能算法的优势,以改进自抗扰控制算法,提高舵系统的抗干扰能力和稳定性。针对自抗扰控制存在的离线调节问题,提出使用粒子群智能算法在线优化舵系统控制器的参数,以适应环境变化及时调整,解决控制性能受限问题。系统的仿真实验结果显示,与传统的PID算法和ADRC算法相比,基于粒子群优化的自抗扰控制方法在舵系统位置环控制中拥有更优的性能。As an important defensive weapon,the rudder system of shipborne decoy jamming missile plays a key role in ensuring the dynamic quality and flight safety of the flight control system.Traditional PID control algorithms have limitations in terms of anti-interference and fast response capabilities.Therefore,the particle swarm optimization technology is introduced and the advantages of active disturbance rejection and intelligent algorithms are integrated to improve the active disturbance rejection control algorithm and to enhance the anti-interference capability and stability of the rudder system.In view of the offline adjustment problem of self-disturbance rejection control,particle swarm intelligence algorithm is proposed to optimize the parameters of the rudder system controller online to adapt to environmental changes and to solve the problem of limited control performance.The simulation results of the system show that compared with traditional PID algorithm and ADRC algorithm,the active disturbance rejection control method based on particle swarm optimization has better performance in the position loop control of the rudder system.

关 键 词:舵机 自抗扰控制 粒子群算法 位置环 参数整定 

分 类 号:TM33[电气工程—电机]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象