复杂光照环境下的标识线图像增强方法  

Mark Line Image Enhancement Method in Complex Illumination Environment

在线阅读下载全文

作  者:吴静 樊绍胜[1] 胡成扬 WU Jing;FAN Shaosheng;HU Chengyang(School of Electrical and Information Engineering,Changsha University of Science and Technology,Changsha 410114,China)

机构地区:[1]长沙理工大学电气与信息工程学院,长沙410114

出  处:《计算机科学》2024年第S01期500-504,共5页Computer Science

摘  要:自动驾驶汽车在行驶过程中需要识别道路标识线以确保行驶在车道上,变电站巡检机器人通过识别道路标识线实现准确巡检。但由于复杂光照环境的影响,道路标识线信息难以准确提取。传统的图像增强方法无法对所有复杂光照环境下的道路标识线图像都产生良好的增强效果,对此提出一种复杂光照环境下的道路标识线图像增强方法。利用HSV色域空间的亮度图像的亮度差进行分层处理,对高亮度差的图像使用自适应伽马校正的方法进行图像增强,对低亮度差的图像先使用直方图锥形拉伸扩大图像灰度级,再利用自适应伽马校正提升图像对比度。实验结果表明,该算法能有效解决低光照、曝光等复杂光照环境所导致的道路标识线难以识别的问题,是一种有效的图像增强方法。In the process of driving,autonomous vehicles need to recognize road sign lines to ensure that they stay in the lane.Substation inspection robots realize accurate inspection by recognizing road sign lines.However,due to the influence of complex lighting environment,road sign line information is difficult to be accurately extracted.However,the traditional image enhancement methods can not produce good enhancement effect on all road sign line images in complex lighting environment,so this paper proposes a road sign line image enhancement method in complex lighting environment.The luminance difference of the luminance image in the HSV color gambit space is processed by layers.The image with high luminance difference is enhanced by the method of adaptive gamma correction.For the image with low luminance difference,histogram conical stretching is first used to enlarge the image gray level,and then adaptive gamma correction is used to enlarge the image contrast.Experimental results show that this algorithm can effectively solve the problem of road sign line recognition caused by low illumination,exposure and other complex lighting environment,and is an effective image enhancement method.

关 键 词:图像增强 伽马校正 直方图锥形拉伸 HSV色彩空间 复杂光照 

分 类 号:TP391[自动化与计算机技术—计算机应用技术]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象