检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:李源鑫 郭忠峰[1] 杨钧麟 LI Yuanxin;GUO Zhongfeng;YANG Junlin(School of Mechanical Engineering,Shenyang University of Technology,Shenyang 110870,China)
出 处:《计算机科学》2024年第S01期512-517,共6页Computer Science
基 金:辽宁省教育厅2021年度科学研究经费项目(面上项目)(LJKZ0114)。
摘 要:为提高现有集装箱的锁孔识别检测效率,减少算法参数量以及减小模型大小,提出了一种基于轻量化YOLOv5s的集装箱锁孔识别算法。该算法将YOLOv5s的Backbone主干特征提取网络部分更换为轻量级神经网络模型MobileNetV3,并对neck部分的特征融合结构进行进一步的优化,减少了模型的参数量和计算量,并提高了检测速度。引入注意力机制SimAM层,提高了检测的准确率和效率。使用不同的改进方法对模型进行重构后,在自建的集装箱锁孔数据集上进行训练和测试,并与改进的YOLOv5s进行对比实验。结果表明,改进后的模型大小仅为2.4 MB,每幅图像的平均检测时间仅为5.1ms,平均检测精度达97.3%;与原始目标检测模型相比,该模型的大小减小了82.8%,检测速度提高了39%,在确保高检测精度的前提下展现出了较强的算法实时性。In order to improve the efficiency of container lock hole recognition and reduce the number of algorithm parameters and model size,a container lock hole recognition algorithm based on lightweight YOLOv5s is proposed.This algorithm replaces the Backbone feature extraction network of YOLOv5s with a lightweight neural network model MobileNetV3,and further optimizes the feature fusion structure of the neck part,which reduces the number of parameters and calculation amount of the model and improves the detection speed.The accuracy and efficiency of detection are improved by introducing the attention mechanism SimAM layer.After the model is reconstructed with different improvement methods,the training and testing are carried out on the self-built container lock hole data set,and the comparison test is carried out with the improved YOLOv5s.The results show that the size of the improved model is only 2.4 MB,the average detection time of each image is 5.1ms,and the average detection accuracy is 97.3%.Compared with the original target detection model,the size of the model is reduced by 82.8%,and the detection speed is increased by 39%,showing strong real-time algorithm on the premise of ensuring high detection accuracy.
关 键 词:机器视觉 集装箱锁孔 YOLOv5s 轻量化 深度学习
分 类 号:TP181[自动化与计算机技术—控制理论与控制工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:18.119.248.54