具有季节性反应扩散疟疾模型的全局动力学  

Global Dynamics of a Reaction-diffusion Malaria Model with Seasonality

在线阅读下载全文

作  者:张志雯 白振国 ZHANG Zhiwen;BAI Zhenguo(School of Mathematics and Statistics,Xidian University,Xi'an 710126)

机构地区:[1]西安电子科技大学数学与统计学院,西安710126

出  处:《工程数学学报》2024年第3期447-457,共11页Chinese Journal of Engineering Mathematics

基  金:国家自然科学基金(12371501).

摘  要:疟疾是一种由疟原虫引起的传染病,它是通过成年雌性按蚊叮咬而引发的人与人之间传播。为了探讨空间异质和季节性对疟疾传播的影响,建立了一类周期的反应扩散模型。鉴于蚊子总密度趋于一个正的周期解,故对原系统的研究转而讨论其极限系统。首先定义了模型的基本再生数R_(0),然后利用单调次齐性系统理论表明了R_(0)是决定极限系统全局动力学的一个阈值参数。具体地说,当R_(0)≤1时,无病周期解是全局渐近稳定的;而当R_(0)>1时,模型存在唯一正的周期解且它是全局渐近稳定的。最后,利用链传递集理论将极限系统的动力学提升到原系统。Malaria is an infectious disease caused by the Plasmodium parasite and it is transmitted among humans through bites of adult female Anopheles mosquitoes.To investigate the effects of spatial heterogeneities and seasonality,we develop a periodic reaction-diffusion model.Since the total density of mosquitoes tends to be a positive periodic solution,we are focus on the limiting system associated with the original system.We first introduce the basic reproduction number R_(0) and then show that R_(0) serves as a threshold parameter in determining the global dynamics of the limiting system by employing the theory of monotone and subhomogeneous systems.More precisely,the disease-free periodic solution is globally asymptotically stable if R_(0)≤1,and the model admits a unique positive periodic solution that is globally asymptotically stable when R_(0)>1.Finally,the threshold type result for the limiting system is lifted to the original system with the help of the theory of chain transitive sets.

关 键 词:疟疾 季节性 反应扩散模型 基本再生数 阈值动力学 

分 类 号:Q332[生物学—遗传学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象