检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:何杜博 孙胜祥 HE Du-bo;SUN Sheng-xiang(Department of Management Engineering and Equipment Economics,Naval University of Engineering,Wuhan 430033,China)
机构地区:[1]海军工程大学管理工程与装备经济系,武汉430033
出 处:《控制与决策》2024年第5期1478-1486,共9页Control and Decision
基 金:国家社会科学基金项目(18BGL287,18BGL285,19CGL073)。
摘 要:针对传统多目标回归算法无法处理输入与多输出间的非线性关系,且忽视了数据点在输入与输出之间的结构信息,导致算法泛化性能受限、缺乏稳健性等问题,提出一种基于实例与目标相关性的多目标稀疏回归(multitarget sparse regression with instances and targets correlations, MTR-ITC)算法.首先,通过嵌入潜变量空间来对复杂的输入与输出以及输出间的关联结构解耦,并利用核技巧和稀疏回归学习输入输出间的非线性关系和输出间的相关结构;然后,引入流形正则化项探索不同实例在输入与输出变量间的相关性,确保模型输出与真实结果在局部和全局结构的一致性,以提升模型泛化性能;最后,提出一种交替优化算法来对目标函数进行求解,使其能快速收敛至全局最优.在基准测试数据集上的实验表明,所提算法在不同MTR数据集上均具有较好的测试性能.To address the problem that traditional multitarget regression algorithms only focus on the linear correlation between input features and target outputs,but ignore the structural information between different instances,i.e.,instance correlation and target correlation,which leads to limited performance of the algorithm,we propose a multi-target sparse regression algorithm based on instance and target correlation(MTR-ITC).First,we construct latent variable space to decouple the complex input-output and output correlation structures,and impose sparse constraints on the corresponding coefficient matrices to explicit encoding and sparse learning of inter-target correlations in the latent variable space.Then,manifold learning is introduced to explore the correlation between different instances in the input and output space to ensure that the model output is consistent with the real results in terms of local and global structure.Finally,an alternating optimization algorithm is proposed to solve the objective function optimally and converge it to the global optimum efficiently.Experiments on the benchmark test dataset show that the MTR-ITC improves the performance of the algorithm compared to existing representative algorithms,and its good convergence makes it possible to iterate and converge to the global optimum rapidly.
关 键 词:多目标回归 稀疏学习 流形学习 交替优化算法 核方法 实例相关性
分 类 号:TP273[自动化与计算机技术—检测技术与自动化装置]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.222