检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:李延珍 王海鑫[1] 杨子豪 陈哲[2] 杨俊友[1] Li Yanzhen;Wang Haixin;Yang Zihao;Chen Zhe;Yang Junyou(School of Electrical Engineering Shenyang University of Technology,Shenyang,110870,China;Department of Energy Technology,Aalborg University,Aalborg DK-9220,Donmark)
机构地区:[1]沈阳工业大学电气工程学院,沈阳110870 [2]丹麦奥尔堡大学能源技术系,奥尔堡DK-9220
出 处:《电工技术学报》2024年第11期3379-3391,共13页Transactions of China Electrotechnical Society
基 金:高等学校学科创新引智计划资助项目(D23005)。
摘 要:精细化负荷预测为制定家庭新型需求响应策略或能效管理模式提供了可靠的指导信息与理论基础,而负荷监测系统的广泛研究与发展为家庭设备层的负荷预测提供了有力的数据支撑。基于家庭负荷智能电能表集中数据,该文提出一种集分解-预测一体化的家庭负荷两阶段超短期负荷预测方法。该方法第一阶段提出了基于卷积神经网络(CNN)和双向门控单元(BiGRU)神经网络的非侵入式负荷分解(NILM)模型,解决了目前深度分解模型中特征提取不充分、分解精度低等问题。第二阶段构建了基于时间模式注意力机制(TPA)的时间卷积神经网络(TCN)负荷预测模型,深度挖掘NILM分解数据、集中负荷数据及日期特征等输入变量的深层交互信息,实现家庭设备层的负荷预测。算例部分通过UK-DALE数据集对所提方法进行验证,结果表明,该方法能够获得较高的分解精度和预测效果,为家庭负荷预测提供了良好的条件。Due to the impact of large-scale renewable energy on the safe and stable operation of power systems,the demand for flexible sources is increasing.The home energy management system is a promising approach to enhance the flexible regulation capability of power systems and improve grid energy efficiency.However,the randomness of residents'electricity behavior,the uncertainty of market information,and the diversity of decision-making subjects make it extremely challenging for residents to participate in fast demand responses.To address these issues,this paper proposes a two-stage household load forecasting method based on the integration of load disaggregation and forecasting.By learning the correlation information from historical electricity consumption data of each appliance obtained by non-intrusive load monitoring(NILM)technology,it accurately realizes the load forecasting of household appliances and flexible cluster load prediction.First,a NILM model based on convolutional neural network(CNN)and bi-directional gated unit(BiGRU)neural network is established to solve the problem of obtaining the operation data of appliances.Subsequently,considering the randomness and uncertainty of user behavior,a time convolutional network(TCN)load forecasting model based on the time pattern attention(TPA)mechanism is constructed to mine the deep interaction information of input variables.Finally,the proposed method is verified by the UK-DALE data set.The results show that the proposed method can obtain high disaggregation accuracy and prediction effect.This paper implements two simulations using Keras with a TensorFlow backend.The first one is designed to monitor the appliance-level energy consumption with the proposed CNN-BiGRU-enabled NILM.The results show that the proposed NILM-Based model can accurately capture the start and end time of the appliance,and has a good trend-tracking effect.With the NILM results,the second one is conducted to verify the effectiveness of the proposed load forecasting model.Compared with other dee
关 键 词:非侵入式负荷分解 负荷预测 卷积神经网络 双向门控单元神经网络 时间卷积网络 注意力机制
分 类 号:TM714[电气工程—电力系统及自动化]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.249