检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:佘维[1,2,3] 孔祥基 郭淑明 田钊 李英豪[1,2,3] SHE Wei;KONG Xiangji;GUO Shuming;TIAN Zhao;LI Yinghao(School of Cyber Science and Engineering,Zhengzhou University,Zhengzhou 450002,China;Songshan Laboratory,Zhengzhou 450046,China;Zhengzhou Key Laboratory of Blockchain and Data Intelligence,Zhengzhou 450002,China;China National Dig-ital Switching System Engineering&Technological R&D Center,Zhengzhou 450002,China)
机构地区:[1]郑州大学网络空间安全学院,河南郑州450002 [2]嵩山实验室,河南郑州450046 [3]郑州市区块链与数据智能重点实验室,河南郑州450002 [4]国家数字交换系统工程技术研究中心,河南郑州450002
出 处:《郑州大学学报(工学版)》2024年第4期11-18,共8页Journal of Zhengzhou University(Engineering Science)
基 金:嵩山实验室预研项目(YYYY022022003);国家自然科学基金资助项目(62206252);河南省科技攻关项目(212102310039)。
摘 要:针对基于深度学习的MVS方法存在网络参数量大、显存占用较高的问题,提出一种基于轻量化深度卷积循环网络的MVS方法。首先,采用轻量化多尺度特征提取网络提取图像的高层语义特征图,构建稀疏代价体减小计算体积;其次,使用卷积循环网络对代价体进行正则化,一次平面扫描完成正则化过程,减少显存占用;最后,通过深度图扩展模块扩展稀疏深度图为稠密深度图,并结合优化算法保证重建精度。在DTU数据集上与最近的方法进行对比,包括传统MVS方法Camp、Furu、Tola、Gipuma,基于深度学习的MVS方法SurfaceNet、PU-Net、MVSNet、R-MVSNet、Point-MVSNet、Fast-MVSNet、GBI-Net、TransMVSNet。实验结果表明:所提方法在精度上与其他方法保持较小差距的前提下,能够将预测时显存开销降低至3.1 GB。Based on deep learning MVS methods,neural networks suffered from a large number of parameters and high GPU memory consumption.To address this issue,a lightweight deep convolutional recurrent network recurrent network-based MVS method was proposed.Firstly,the original images passed through a lightweight multi-scale fea-ture extraction network to obtain high-level semantic feature maps.Then,a sparse cost volume to reduce the com-putational workload was constructed.Next,GPU memory consumption was reduced by using a simple plane sweep-ing technique that utilized by a convolutional recurrent network for cost volume regularization.Finally,sparse depth maps were extended to dense depth maps using an extension module.With a refinement algorithm,the proposed approach achieved a certain level of accuracy.The proposed approach was compared to state-of-the-art methods on the DTU dataset including traditonal MVS methods Camp,Furu,Tola,and Gipuma,and also including deep learn-ing-based MVS methods SurfaceNet,PU-Net,MVSNet,R-MVSNet,Point-MVSNet,Fast-MVSNet,GBI-Net,and TransMVSNet.The results demonstrated that the proposed approach reduced GPU consumption to approximately 3.1 GB during the prediction stage,and the differences in precision compared to other methods were relatively small.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:18.218.254.84