检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:孙强[1] 李正 何浪 SUN Qiang;LI Zheng;HE Lang(Department of Communication Engineering,School of Automation and Information Engineering,Xi’an University of Technology,Xi’an 710048,China;Department of Electronic Engineering,School of Automation and Information Engineering,Xi’an University of Technology,Xi’an 710048,China;School of Computer Science and Technology,Xi’an University of Posts and Telecommunications,Xi’an 710121,China)
机构地区:[1]西安理工大学自动化与信息工程学院通信工程系,西安710048 [2]西安理工大学自动化与信息工程学院电子工程系,西安710048 [3]西安邮电大学计算机学院,西安710121
出 处:《电子与信息学报》2024年第5期2249-2263,共15页Journal of Electronics & Information Technology
基 金:国家自然科学基金(62370215);西安市科技计划项目(22GXFW0086);西安市碑林区科技计划项目(GX2243)。
摘 要:现有基于深度学习的大多数方法在实现患者抑郁程度自动识别的过程中,主要存在两大挑战:(1)难以利用深度模型自动地从面部表情有效学习到抑郁强度相关的全局上下文信息,(2)往往忽略抑郁强度相关的全局和局部信息之间的语义一致性。为此,该文提出一种全局抑郁特征局部感知力增强和全局-局部语义相关性特征融合(PLEGDF-FGLSCF)的抑郁强度识别深度模型。首先,设计了全局抑郁特征局部感知力增强(PLEGDF)模块,用于提取面部局部区域之间的语义相关性信息,促进不同局部区域与抑郁相关的信息之间的交互,从而增强局部抑郁特征驱动的全局抑郁特征表达力。然后,提出了全局-局部语义相关性特征融合(FGLSCF)模块,用于捕捉全局和局部语义信息之间的关联性,实现全局和局部抑郁特征之间的语义一致性描述。最后,在AVEC2013和AVEC2014数据集上,利用PLEGDF-FGLSCF模型获得的识别结果在均方根误差(RMSE)和平均绝对误差(MAE)指标上的值分别是7.75/5.96和7.49/5.99,优于大多数已有的基准模型,证实了该方法的合理性和有效性。For automatic recognition of the depression intensity in patients,the existing deep learning based methods typically face two main challenges:(1)It is difficult for deep models to effectively capture the global context information relevant to the level of depression intensity from facial expressions,and(2)the semantic consistency between the global semantic information and the local one associated with depression intensity is often ignored.One new deep neural network for recognizing the severity of depressive symptoms,by combining the Perceptually Locally-Enhanced Global Depression Features and the Fused Global-Local Semantic Correlation Features(PLEGDF-FGLSCF),is proposed in this paper.Firstly,the PLEGDF module for the extraction of global depression features with local perceptual enhancement,is designed to extract the semantic correlations among local facial regions,to promote the interactions between depression-relevant information in different local regions,and thus to enhance the expressiveness of the global depression features driven by the local ones.Secondly,in order to achieve full integration of global and local semantic features related to depression severity,the FGLSCF module is proposed,aiming to capture the correlation of global and local semantic information and thus to ensure the semantic consistency in describing the depression intensity by means of global and local semantic features.Finally,on the AVEC2013 and AVEC2014 datasets,the PLEGDFFGLSCF model achieved recognition results in terms of the Root Mean Square Error(RMSE)and the Mean Absolute Error(MAE)with the values of 7.75/5.96 and 7.49/5.99,respectively,demonstrating its superiority to most existing benchmark methods,verifying the rationality and effectiveness of our approach.
关 键 词:抑郁强度 人脸图像 局部感知力增强 全局和局部特征融合 语义一致性
分 类 号:TN957.52[电子电信—信号与信息处理]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.17.81.34