基于GRU的密集连接时空图注意力网络的城市交通预测  

Urban traffic prediction based on densely connected spatial-temporal graph attention network of GRU

在线阅读下载全文

作  者:郭海锋[1] 许宏伟 周子盛 GUO Haifeng;XU Hongwei;ZHOU Zisheng(Institute of Cybersecurity,Zhejiang University of Technology,Hangzhou 310014;College of Information Engineering,Zhejiang University of Technology,Hangzhou 310023)

机构地区:[1]浙江工业大学信息工程学院,杭州310014 [2]浙江工业大学网络空间安全研究院,杭州310023

出  处:《高技术通讯》2024年第5期463-474,共12页Chinese High Technology Letters

基  金:国家自然科学基金(52072343);浙江省自然科学基金(LY20E080023);国家重点研发计划(2019YFE0126100)资助项目。

摘  要:城市道路拓扑结构的复杂性、交通流量的实时变化以及多元的外部环境等因素给交通预测带来了极大的困难。现有方法对交通路网的时空特征挖掘性不足,缺乏对外部因素的考虑,为此本文提出了一种基于门控循环单元(GRU)的时空图注意力密集连接网络,通过门控循环单元来捕获路网数据的动态规律,并以图注意力密集连接网络来提取路网复杂的空间结构特征,建立城市交通网络对时空的依赖关系。针对外部客观因素,采用独热编码的方式对城市各路段发生的交通事件进行数据建模,增强交通网络的信息属性。以杭州申花路及周围共309个路段为例,对所提出模型的预测能力和可行性进行验证。实验结果表明,模型预测精度最高达到了81.64%,与传统数学模型和主流的神经网络模型对比,预测精度较ARIMA提高了35.42%,较图注意力网络(GAT)和GRU神经网络分别提高了17.45%和3.02%。实验证明该方法可以适应复杂的交通流进行长期的交通预测任务,同时也能增强交通管理能力,减少交通拥堵成本。Due to the complexity topology of urban traffic network,the real-time change of traffic flow and external envi-ronmental factors,there are huge difficulties in traffic prediction.In view of the inadequacy of existing methods in mining the spatio-temporal features of road network and the insufficient consideration of external factors,a spatial-temporal network of dense graph attention network based on gated recurrent unit(GRU)(DG-GRU)is proposed.The function of gated recurrent unit is used to capture the dynamic changes of road network data.Densely connect-ed graph attention network(GAT)is used to extract the complex spatial structure characteristics of the road net-work.They can establish the dependence of urban traffic network data on time and space.Considering the influ-ence of external factors,the one-hot encoding is used to model the traffic events that occur in urban sections to en-hance the information attributes of transportation network.Taking Shenhua Road and its surrounding sections in Hangzhou as an example to verify the predictive ability and feasibility of the network.The experimental results il-lustrate that the prediction accuracy of the method is up to 81.64%.Compared with traditional mathematical model and mainstream neural network model,the prediction accuracy of DG-GRU is 35.42%higher than that of ARIMA.Compared with graph attention network(GAT)and GRU neural networks,its prediction accuracy is improved by 17.45%and 3.02%,respectively.Experimental results show that the model in this paper can adapt to complex traffic flow and carry out long-term traffic forecasting tasks.Meanwhile,it can enhance traffic management ability and reduce the costs traffic congestion.

关 键 词:交通预测 时空特征 神经网络 门控循环单元(GRU) 密集连接 图注意力网络(GAT) 

分 类 号:TP183[自动化与计算机技术—控制理论与控制工程] U491.14[自动化与计算机技术—控制科学与工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象