检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:聂源 赖惠成[1] 高古学 NIE Yuan;LAI Huicheng;GAO Guxue(School of Computer Science and Technology,Xinjiang University,Urumqi 830046,China)
机构地区:[1]新疆大学计算机科学与技术学院,乌鲁木齐830046
出 处:《计算机工程与应用》2024年第12期189-202,共14页Computer Engineering and Applications
基 金:新疆维吾尔自治区重点研发计划(2022B01008);国家自然科学基金(U1803261,2022ZD0115803)。
摘 要:近年来,目标检测技术已经相当成熟,但小目标检测一直是目标检测领域的一大挑战。为了解决这一问题,设计一种名为MFF-YOLOv7的小目标检测算法,该算法旨在提高小目标检测的准确率。设计级联双向特征金字塔KBiFPN,以及联合提出的多级感受野特征聚合模块MFA,来聚合浅层特征并增强特征的信息表达能力。为了解决小目标漏检问题,设计了新的解耦头和新的注意力机制。新的解耦头对小目标的检测能力更强,新的注意力机制可以重点关注感兴趣的小目标区域。引入了一种新的损失函数ECIOU,旨在加快模型的收敛速度。为了验证模型的性能,分别在三个小目标数据集上进行了实验。实验结果表明,MFF-YOLOv7算法提高了检测精度。同时,使用多目标追踪Bytetrack算法在MOT17和VisDrone2019-MOT两个多目标追踪数据集上对新模型进行了验证,进一步证明了其有效性。此外,MFF-YOLOv7算法在动态视频追踪中表现出了良好的性能。In recent years,although target detection techniques have become quite mature,the detection of small targets has been a major challenge in the field of target detection.In order to solve this problem,a small target detection algorithm called MFF-YOLOv7 is developed.The algorithm aims to improve the accuracy of small target detection.Firstly,the designed cascaded bidirectional feature pyramid KBiFPN and the proposed multi-level sensory field feature aggregation module MFA are used to aggregate the shallow features and improve the information expression of the features to improve the accuracy of small target detection.To solve the problem of small target miss detection,a new decoupling head and a new attention mechanism are designed.This detection head is more capable of detecting small targets and can focus on the small target region of interest through the attention mechanism,thus reducing the leakage detection.Finally,a new loss function,ECIOU,is introduced to speed up the convergence of the model.To validate the performance of the model,experiments are performed on three small target datasets.The experimental results show that the MFF-YOLOv7 algorithm achieves higher detection accuracy.Meanwhile,the effectiveness of the new model is further demonstrated by the multitarget tracking Bytetrack algorithm on two multi-target tracking datasets,MOT17 and VisDrone 2019-MOT.MFF-YOLOv7 is also able to show good performance in dynamic video tracking.
关 键 词:MFF-YOLOv7 小目标检测 多级感受野 多目标追踪 Bytetrack
分 类 号:TP391[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.200