检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:陶玉婷 李平平 徐云涛 聂武楠 陈阳[3] 高金威 段献宝 TAO Yuting;LI Pingping;XU Yuntao;NIE Wunan;CHEN Yang;GAO Jinwei;DUAN Xianbao(School of Material Science and Engineering,Wuhan Institute of Technology,Wuhan,Hubei 430205,China;CRRC Qishuyan Institute Co.,Ltd.,Changzhou,Jiangsu 213011,China;School of Mechanical Automation,Wuhan University of Science and Technology,Wuhan,Hubei 430065,China)
机构地区:[1]武汉工程大学材料科学与工程学院,湖北武汉430205 [2]中车戚墅堰机车车辆工艺研究所股份有限公司,江苏常州213011 [3]武汉科技大学机械自动化学院,湖北武汉430065
出 处:《轨道交通材料》2024年第3期6-11,共6页MATERIALS FOR RAIL TRANSPORTATION SYSTEM
摘 要:通过综合应用深度学习与图像处理技术,对金相图像中晶界进行分割与修复,为晶粒度的准确评级提供基础。首先,通过采集并人工标注多样化的金相图像样本,利用U-net模型结合数据增强和合理的切割策略,提升模型的泛化能力和鲁棒性。其次,采用封闭晶界的数据集,增强模型的预测能力。第三,提出晶界匹配像素准确率这一新的评估指标,有效衡量了模型对晶界预测的准确性。此外,采用图像处理技术对提取到的晶界进行修复,进一步提高晶界线的完整性和连续性。这些方法的综合应用不仅提高了金相图像晶界分割的准确度,而且为材料微观结构的表征与性能评估提供了一种高效的技术手段。By the aid of comprehensive application of deep learning and image processing technology,the grain boundaries in metallographic images are segmented and repaired,which provides a basis for accurate grain size rating.Firstly,by collecting and manually annotating diversified metallographic image samples,the U-net models combined with data enhancement and reasonable segmentation strategies are used to improve the generalization and robustness of the models.Secondly,a closed grain boundary data set is used to enhance the predictive ability of the models.Thirdly,a new evaluation index of pixel accuracy of grain boundary matching is proposed,which can effectively measure the accuracy of grain boundary prediction by the models.In addition,image processing techniques are applied to repair the extracted grain boundaries,which therefore can improve the integrity and continuity of the grain boundary lines.The comprehensive application of these methods not only improves the accuracy of grain boundary segmentation of metallographic images,but also provides an efficient technical means for the characterization and performance evaluation of material microstructures.
关 键 词:金相图 晶粒度评估 图像分割 深度学习 图像处理
分 类 号:U270.67[机械工程—车辆工程] TG115[交通运输工程—载运工具运用工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.16.125.156