基于双标注框架的实体关系联合抽取  

Joint extraction of entities and relations based on double-labeled architecture

在线阅读下载全文

作  者:曾碧卿 蔡剑 李砚龙 ZENG Bi-qing;CAI Jian;LI Yan-long(School of Software,South China Normal University,Foshan 528225,China)

机构地区:[1]华南师范大学软件学院,广东佛山528225

出  处:《计算机工程与设计》2024年第6期1888-1895,共8页Computer Engineering and Design

基  金:国家自然科学基金面上基金项目(62076103);广东省基础与应用基础研究基金项目(2021A1515011171);广东省普通高校人工智能重点领域专项基金项目(2019KZDZX1033);广州市基础研究计划基础与应用基础研究基金项目(202102080282)。

摘  要:实体关系抽取有流水线和联合抽取两种,联合抽取能更有效地抽取实体关系,流水线的适应能力更灵活。为解决实体关系抽取中的关系重叠问题,提出一种双标注实体关系抽取框架。使用联合解码的方式抽取自然文本中的主体实体,使用流水线方式抽取出客体实体。使用联合解码保证抽取精度的同时继承流水线的灵活性。所提模型在信息抽取数据集DUIE和远程监督数据集NYT上进行实验,其结果表明,该模型与基线模型相比具有竞争力。Relations extraction methods can be divided into two types including pipeline method and joint extraction,and the joint extraction model can extract the relation more effectively,and the adaptability of pipeline is more flexible.To solve the problem of relation overlap in relation extraction,the double-labeled relations extraction framework was proposed.The joint decoding was used to extract the subject entity in the natural text,and the object entity was extracted by pipeline.This technique ensured the extraction accuracy using the joint decoding method,and inherited the flexibility of the pipeline method.The proposed framework was experimented on the information extraction dataset DUIE and the remote supervision dataset NYT.The results show that this model can achieve competitive performance compared with the baseline model.

关 键 词:实体关系抽取 序列标注 联合关系抽取 关系重叠 信息抽取 注意力机制 自然语言处理 

分 类 号:TP391[自动化与计算机技术—计算机应用技术]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象