一种基于元学习的自适应调制编码策略  

An adaptive modulation and coding strategy based on Meta-learning

在线阅读下载全文

作  者:许晨 杨少石 谭景升 XU Chen;YANG Shaoshi;AN Jingsheng(School of Information and Communication Engineering,Beijing University of Posts and Telecommunications,Beijing 100876,China;Key Laboratory of Universal Wireless Communications,Ministry of Education,Beijing 100876,China)

机构地区:[1]北京邮电大学信息与通信工程学院,北京100876 [2]泛网无线通信教育部重点实验室,北京100876

出  处:《中国传媒大学学报(自然科学版)》2024年第3期42-48,共7页Journal of Communication University of China:Science and Technology

基  金:北京市自然科学基金重点项目(Z220004);北京市科委新一代信息通信技术创新项目(Z221100007722036)。

摘  要:针对现有基于深度学习的自适应调制编码算法在信道环境改变时出现的模型泛化能力下降的问题,提出了一种基于元学习的自适应调制编码策略。该方法利用元学习算法快速适应新任务的优势,使得模型仅需通过新环境下的少量样本微调就能获得良好的性能。仿真结果和讨论都表明,本文所提算法比基线算法在性能上表现更为优越。A meta-learning-driven adaptive modulation coding strategy was proposed for dealing with the model generalization capability degradation problem encountered by the existing deep learning algorithms when the channel environment was changed.The proposed approach employed the Model-Agnostic Meta-Learning(MAML)algorithm to predict the modulation and coding schemes based on channel characteristics.Initially,two neural network models were proposed and trained.Subsequently,a small number of samples from new channel scenarios were used to fine-tune the trained model parameters,thus enabling rapid adaptation to new environments.Both simulation results and discussions demonstrate that the proposed algorithm outperforms the baseline algorithms in term of throughput performance and model generalization capability.

关 键 词:元学习 自适应调制编码 泛化能力 

分 类 号:TN92[电子电信—通信与信息系统]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象