检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:于晓 魏成亮 杨起 YU Xiao;WEI Chengliang;YANG Qi(Unit 32201 of PLA,Baicheng 137001,China)
出 处:《火力与指挥控制》2024年第5期179-183,共5页Fire Control & Command Control
摘 要:炮口初速是影响火炮射击精度的重要因素,如何能够准确预测出炮口初速,把握短暂战机精确打击目标,成为研究的重要方向。以往对炮口初速的预测大多采用单一的预测模型进行预测,虽运算过程简单但是预测精度并不理想。为提高模型预测精度,提出在GM(1,1)、BP神经网络预测模型基础上,利用误差平方和最小原则建立组合预测模型,对炮口初速进行预测。预测结果表明组合模型预测结果精度高于其他两个单项模型。Muzzle velocity is an important factor that affects the firing accuracy of artillery.How to accurately predict muzzle velocity and grasp the transient combat opportunity to strike targets precisely has become an important research direction.In the past,most of the muzzle velocity was predicted by a single prediction model.Although the calculation process is simple,the prediction accuracy is not ideal.In order to improve the prediction accuracy of the model,a combined prediction model is established based on the GM(1,1)and BP neural network prediction models with the principle of minimum the sum of error squares to predict the muzzle velocity.The prediction results show that the prediction accuracy of the combined model is higher than that of the other two single models.
关 键 词:GM(1 1)模型 BP神经网络模型 组合预测模型 炮口初速
分 类 号:TJ35[兵器科学与技术—火炮、自动武器与弹药工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.7