基于小样本数据增强的航天器表面损伤智能检测方法  被引量:1

An Intelligent Inspection Method for Spacecraft Surface Damage Based on Small Sample Data Augmentation

在线阅读下载全文

作  者:刘纯武 方青云 王兆魁[1] LIU Chunwu;FANG Qingyun;WANG Zhaokui(School of Aerospace Engineering,Tsinghua University,Beijing 100084,China)

机构地区:[1]清华大学航天航空学院,北京100084

出  处:《上海航天(中英文)》2024年第3期150-158,175,共10页Aerospace Shanghai(Chinese&English)

基  金:国家重点研发计划(2023YFC2205601)。

摘  要:在轨运行的航天器表面形成损伤有可能导致严重的后果,需要对航天器进行在轨实时损伤检测。针对航天器损伤检测图像样本难以获取的问题,本文采用智能化检测方法,提出了一种用于航天器表面损伤样本扩充的生成对抗网络,该网络能够学习单张输入图像的特征纹理表示,从而生成大量与输入图像特征相似的细粒度尺度样本,实现了少量图像数据样本的扩充。利用YOLO目标检测算法在扩充的图像样本中进行表面缺陷与损伤的检测识别,获取了较高的检测精度,为未来航天器健康状态监测与评估、通用化服务机器人应用及太空原位建设等提供了技术支撑。The surface damage to a spacecraft in orbit may have serious consequences,and thus real-time damage inspection is required.In order to solve the problem that spacecraft damage image samples are difficult to obtain,in the paper,a generative adversarial network(GAN)for spacecraft surface damage based on small sample data augmentation is proposed by means of the intelligent inspection method.The network can learn the feature texture representation of a single input image,and generate a large number of fine-grained samples similar to the features of the input image,thus realizing the expansion of a small number of image data samples.The YOLO object inspection algorithm is used to inspect and identify the surface defects and damage in the expanded image samples,and high inspection precision is obtained.The proposed network can provide technical support for the future spacecraft health monitoring and evaluation,the application of generalized service robots,and the in-situ construction of space.

关 键 词:智能化检测 样本扩充 生成对抗网络 目标检测 损伤检测 

分 类 号:V19[航空宇航科学与技术—人机与环境工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象