检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:胡育诚 王向军[1] 汪石川 HU Yucheng;WANG Xiangjun;WANG Shichuan(College of Electrical Engineering,Naval University of Engineering,Wuhan 430033,China)
机构地区:[1]海军工程大学电气工程学院,湖北武汉430033
出 处:《华中科技大学学报(自然科学版)》2024年第4期88-93,共6页Journal of Huazhong University of Science and Technology(Natural Science Edition)
基 金:国家自然科学基金资助项目(41476153)。
摘 要:为实现低信噪比情况下的舰船轴频电场特征提取,提出一种基于MEFD-小波阈值的特征提取方法.首先采用引入自回归滑动平均模型(ARMA)的改进经验傅里叶分解(MEFD)分解含噪信号;然后采用L2范数筛选出有效信息分量;最后对后续的信号采用小波阈值降噪进行处理.为验证所提方法的有效性,采用仿真信号与船模实测信号进行对比实验.结果表明:本文方法对环境噪声干扰具有鲁棒性,在船模实验2B距离下的提取结果正交性指数为0.0015,相似性指数为0.4503,具有更好的特征提取效果,能实现更远距离的电场信号检测,为后续的电场特性分析及应用打下良好基础.To realize feature extraction of ship shaft-rate electric field at low signal-noise ratio(SNR),a feature extraction method based on modified empirical Fourier decomposition(MEFD)-wavelet threshold was proposed.First,the MEFD which introduced the auto regressive and moving average model(ARMA)was adopted to separate signal from noise.Then,the L2-norm was calculated to screen out the efficient information components.Finally,the following components were processed by wavelet threshold denoising.To verify the feasibility of the proposed method,the simulation signatures and ship model measured signatures were conducted.Experimental results show that the proposed method is robust to the environmental noise.The index of orthogonality is 0.0015,and similarity index is 0.4503 in the extracting result of 2B distance in ship model experiment,which has better performance of feature extraction than other methods.The proposed method can detect the electric field signatures in a longer distance and lay a good foundation for the subsequent analysis and application of electric field characteristics.
关 键 词:轴频电场 改进经验傅里叶分解 小波阈值去噪 L2范数 特征提取
分 类 号:TP274.5[自动化与计算机技术—检测技术与自动化装置]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.49