检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:李骁 夏佳佳 张向奎[2] LI Xiao;XIA Jiajia;ZHANG Xiangkui(School of Automotive Engineering,Dalian University of Technology,Dalian 116024,Liaoning,China;School of artificial Intelligence,Dalian University of Technology,Dalian 116024,Liaoning,China)
机构地区:[1]大连理工大学汽车工程学院,辽宁大连116024 [2]大连理工大学人工智能学院,辽宁大连116024
出 处:《计算机辅助工程》2024年第2期17-23,60,共8页Computer Aided Engineering
摘 要:为指导短纤维增强复合材料设计,提出一种基于人工神经网络的方法。首先,结合取向平均法和自洽假设建立数学模型,计算出不同体积分数下SFRCs的弹性性能;然后,建立2个不同的人工神经网络,将数学模型计算得到的数据集投入训练,由此可以由SFRCs的体积分数快速预测出弹性性能,也可以由已知的SFRCs的弹性性能反向推导出纤维的体积分数。与传统方法相比,该方法可以有效减少重复实验次数,降低成本与周期,对复合材料实验的设定有一定的参考意义。In order to guide the design of short fiber reinforced composites,a method based on artificial neural network is proposed.First,a mathematical model is established by combining orientation averaging method and self-consistent hypothesis,to calculate the elastic properties of SFRCs under different volume fractions.Then,two different artificial neural networks are built,and the data sets obtained from the mathematical model are trained.The elastic properties of SFRCs can be quickly predicted from the volume fraction of SFRCS.The fiber volume fraction can also be inversely derived from the known elastic properties of SFRCs.Compared with the traditional method,it can effectively reduce the number of repeated experiments,reduce the cost and cycle,and has certain reference significance for the setting of composite experiments.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.49