检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:张琮昊 迟子秋 王占全[1] 王喆[1] ZHANG Conghao;CHI Ziqiu;WANG Zhanquan;WANG Zhe(School of Information Science and Engineering,East China University of Science and Technology,Shanghai 200237,China)
机构地区:[1]华东理工大学信息科学与工程学院,上海200237
出 处:《华东理工大学学报(自然科学版)》2024年第3期435-441,共7页Journal of East China University of Science and Technology
基 金:国家自然科学基金(62076094);上海市科技计划(21511100800,20511100600)。
摘 要:肺结节分类问题是早期肺癌检测与诊断的重要问题之一,针对现有的肺结节分类方法存在多尺度特征融合的信息冗余和缺乏判别性特征表示等问题,提出了一个基于多尺度特征互补与聚合约束(Multi-scale Feature Complementation and Aggregate Constraint, MFCAC)的肺结节分类方法,并提出了多尺度特征互补模块用于学习相邻尺度特征的差异信息,从而避免特征融合过程中的信息冗余;同时在网络特征层引入了聚合约束损失,实现对同类特征的聚集,提高网络判别性特征表示能力;将两个模块融入在编码器-解码器架构中形成MFCAC,共同作用实现高效分类。本文在LIDC-IDRI数据集上进行了对比实验,并通过消融实验分析了该方法中各组成部分的贡献和影响,结果表明,相较于对比算法,MFCAC在肺结节分类上具有更优的性能。The classification of pulmonary nodule is one of the important issues in early detection and diagnosis of lung cancer.To address the problem of information redundancy in multi-scale feature fusion and lack of discriminative feature representation in existing lung nodule classification methods,a multi-scale feature complementation and aggregate constraint(MFCAC)pulmonary nodule classification network is proposed.A multi-scale feature complementation module is proposed to learn the difference information of adjacent scale features,thereby avoiding information redundancy in the feature fusion process.Meanwhile,aggregate constraint loss is introduced into the network feature layer to achieve aggregation of similar features and improve the discriminative feature representation ability of the network.The two modules are integrated into the encoder-decoder architecture to form MFCAC,which can achieve efficient classification.Comparative experiments are conducted on the LIDC-IDRI dataset,and ablation experiments are used to analyze the contributions and effects of each component in this method.The results show that MFCAC has better performance in lung nodule classification compared to the compared algorithms.
关 键 词:早期肺癌诊断 肺结节分类 深度学习 多尺度特征 卷积神经网络
分 类 号:TP183[自动化与计算机技术—控制理论与控制工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.222