检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:丁涛[1,2] 吴浩 朱大虎[1,2] DING Tao;WU Hao;ZHU Dahu(Hubei Longzhong Laboratory,Wuhan University of Technology Xiangyang Demonstration Zone,Xiangyang,Hubei,441000;School of Automotive Engineering,Wuhan University of Technology,Wuhan,430070)
机构地区:[1]武汉理工大学襄阳示范区湖北隆中实验室,襄阳441000 [2]武汉理工大学汽车工程学院,武汉430070
出 处:《中国机械工程》2024年第6期1074-1085,共12页China Mechanical Engineering
基 金:国家重点研发计划(2022YFB4700501);国家自然科学基金(51975443);湖北隆中实验室自主创新项目(2022ZZ-27)。
摘 要:点云配准是大型车身构件位姿参数测量的关键方法,但现有算法在大量异常点云干扰下难以配准至有效位姿,从而导致匹配失真,进而无法保证后续机器人作业质量。针对此问题,提出一种能够有效抑制异常点云干扰的车身构件鲁棒性配准算法——鲁棒函数加权方差最小化(RFWVM)算法。建立鲁棒函数加权目标函数,通过施加随迭代次数可变的动态权重来抑制配准过程中异常点云的影响,并由高斯-牛顿法迭代完成刚性转换矩阵的求解。以高铁白车身侧墙、汽车车门框为研究对象的试验结果表明,较经典的最近点迭代(ICP)算法、方差最小化(VMM)算法、加权正负余量方差最小化(WPMAVM)算法和去伪加权方差最小化(DPWVM)算法,所提出的RFWVM算法配准精度更高,能够有效抑制各种异常点云对配准结果的影响,并具有更好的稳定性和鲁棒性,能够有效实现各类车身构件点云的精确配准。Point cloud registration was a key method for pose parameter measurement of large vehicle body components,but the existing algorithms were difficult to register to effective pose under a large number of abnormal point cloud interference,thereby resulting in matching distortion and inability to ensure the quality of subsequent robotic operations.To address the issue,a robust registration algorithm for vehicle body components,robust function weighted variance minimization(RFWVM)algorithm was proposed that might effectively suppress the interference of abnormal point cloud.A robust function weighted objective function was established,and the influences of abnormal point cloud in the registration processes were suppressed by applying dynamic weights that varied with the number of iterations.The rigid transformation matrix was solved iteratively by the Gauss-Newton method.The experimental results on the side walls of high-speed rail body and car door frames demonstrate that the proposed RFWVM algorithm has higher registration accuracy compared to classic algorithms,such as interactive closure point(ICP),variance minimization(VMM),weighted plus and minimum allowance variance minimization(WPMAVM),de-pseudo-weighted variance minimization(DPWVM),may effectively suppress the influences of various abnormal point clouds on registration results,and also behaves better stability and robustness.The method may effectively achieve the accurate registration of various vehicle body components.
关 键 词:点云配准 异常点云干扰 鲁棒函数 车身构件 机器人视觉测量
分 类 号:TP24[自动化与计算机技术—检测技术与自动化装置]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.7