室内移动机器人激光点云2D墙线检测实验  被引量:1

LiDAR point-cloud-based 2D wall line detection experiment of indoor mobile robot

在线阅读下载全文

作  者:赵师兵 张志明[1] 康琦[1] 张军旗 ZHAO Shibing;ZHANG Zhiming;KANG Qi;ZHANG Junqi(College of Electronic and Information Engineering,Tongji University,Shanghai 200092,China)

机构地区:[1]同济大学电子与信息工程学院,上海200092

出  处:《实验技术与管理》2024年第5期76-81,共6页Experimental Technology and Management

基  金:上海市教育委员会科研创新计划(202101070007E00098);2022年度学科交叉联合攻关项目:上海市级科技重大专项“人工智能基础理论与关键核心技术”(2021SHZDZX0100);中央高校基本科研业务费专项资金资助(2990141301/008);教育部产学合作协同育人项目(220602518253743,202102278020);同济大学第十八期实验教学改革专项基金项目(0800104321)。

摘  要:快速、准确地识别墙线环境元素是室内移动机器人导航功能的重要基础。该文针对传统霍夫变换方法易丢失信息和产生过多冗余线段问题,提出一种基于激光雷达点云数据空间特性的2D墙线直接提取算法。首先通过点云直通滤波技术去除原始三维点云数据中的地面点云干扰;然后将清洗后的点云投影到二维地平面上,转化为二值化图像后进行直线检测;再利用自定义的直线滤波增强算法,在减少冗余线段的同时保留更多有效墙线信息,从而快速生成更为吻合的建筑物墙线模型。仿真实验结果表明,新算法在不同复杂度场景下提取的线段数量整体平均降低50.8%,且处理时间小于100 ms,满足移动机器人导航过程中实时环境识别需求。该实验适合用作高校教学实验,有助于学生将理论知识与实践操作相结合,深入理解室内地图构建与环境感知技术。[Objective]The efficient navigation of indoor mobile robots crucially depends on the swift,accurate identification of wall line elements within their surroundings.Conventional approaches,such as the Hough transform methods,have certain limitations,including a propensity to lose vital information and generate an excessive number of redundant line segments.To overcome these challenges,a novel algorithm that leverages the spatial characteristics of Light Detection and Ranging(LiDAR)point cloud data is presented to extract 2D wall lines directly,remarkably improving accuracy and efficiency in environmental element identification.[Methods]First,the raw 3D point cloud data obtained by LiDAR undergo direct pass-through filtering to remove the interference due to ground and ceiling points present in the cloud data,enabling a clean dataset free from distortions that can skew the overall outcomes.Second,the new purified point cloud data are projected onto a 2D ground plane.This projection is a key part of the process because it transforms the original 3D data into a simpler,more manageable format.The conversion of the data minimizes the complexity of the data,facilitating analysis and interpretation.Third,the projected 2D data are then transformed into a binary image,which facilitates linear detection because it simplifies the data even further,enabling faster and more accurate detection of lines.Thus,the EDlines algorithm is used to extract a preliminary set of straight lines from the obtained binarized image.Finally,the indoor local map’s building wall line model is developed through a custom straight-line filtering enhancement algorithm,which is established to manage the previous collection of extracted line segment components.The algorithm is composed of three main stages performed in sequence:merging nearby points,absorbing short segments into longer ones,and combining them into long lines from multiple short ones.After processing,the previously extracted set of line segments can be integrated and connected within t

关 键 词:室内移动机器人 激光点云处理 墙线检测 实时环境识别 教学实验 

分 类 号:TP242[自动化与计算机技术—检测技术与自动化装置] TP316[自动化与计算机技术—控制科学与工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象