基于注意力卷积神经网络的视觉里程计  

Visual Odometer Based on Attention-convolution Neural Network

在线阅读下载全文

作  者:高学金 牟雨曼[1,2,3,4] 任明荣 GAO Xuejin;MU Yuman;REN Mingrong(Information Science Department,Beijing University of Technology,Beijing 100124,China;Engineering Research Center of Digital Community,Ministry of Education,Beijing University of Technology,Beijing 100124,China;Beijing Laboratory for Urban Mass Transit,Beijing University of Technology,Beijing 100124,China;Beijing Key Laboratory of Computational Intelligence and Intelligent System,Beijing University of Technology,Beijing 100124,China)

机构地区:[1]北京工业大学信息学部,北京100124 [2]北京工业大学数字社区教育部工程研究中心,北京100124 [3]北京工业大学城市轨道交通北京实验室,北京100124 [4]北京工业大学计算智能与智能系统北京市重点实验室,北京100124

出  处:《控制工程》2024年第6期1060-1066,共7页Control Engineering of China

基  金:国家自然科学基金资助项目(61803005,61763037);北京市自然科学基金资助项目(4192011)。

摘  要:传统的视觉里程计(visual odometry,VO)要求图像含有大量的纹理信息,且求解过程较为复杂。针对以上问题提出基于注意力卷积神经网络的视觉里程计,对相机进行端到端的位姿估计,利用注意力机制提高模型估计轨迹的精度。首先,使用注意力-卷积神经网络(convolutional neural networks,CNN)模块提取图像特征;然后,将特征输入到门控循环单元(gated recurrent unit,GRU)学习图像的时序连接性;最后,通过全连接层降维输出相机位姿。在KITTI数据集上完成实验,并与其他方法进行对比,结果表明卷积网络中加入注意力机制可以有效提高轨迹估计的精度,且误差低于其他视觉里程计算法。The traditional visual odometry requires a lot of texture information in the picture,and the solution process is complex.To solve the above problems,a visual odometer based on attention-convolution neural network is proposed to estimate the pose of camera end-to-end.Firstly,the attention-convolutional neural networks are used to extract the features of the images,then,the features are input to the gated recurrent unit to learn the temporal connectivity.Finally,the camera pose is output through full connection layer dimensionality reduction.The experiment is completed on KITTI data set and compared with other methods.The results show that adding attention mechanism to convolution network can effectively improve the accuracy of trajectory estimation,and the error is lower than other visual mileage calculation methods.

关 键 词:视觉里程计 注意力机制 卷积神经网络 门控循环单元 

分 类 号:TP242[自动化与计算机技术—检测技术与自动化装置]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象