基于PSO-BP神经网络的草原放牧策略研究  

Research on Grassland Grazing Strategy Based on PSO-BP Neural Network

在线阅读下载全文

作  者:杜凌枫 Lingfeng Du(College of Mechanical Engineering,University of Shanghai for Science and Technology,Shanghai)

机构地区:[1]上海理工大学机械工程学院,上海

出  处:《建模与仿真》2024年第3期3387-3396,共10页Modeling and Simulation

摘  要:土壤有机碳是土壤化学物质的重要组成部分,建立其与其它化学物质的灰色关联模型,同时与放牧强度进行联合分析,得出适当放牧有助于提高土壤有机碳的循环。由于预测数据维度较多,选取BP神经网络模型能够有效预测,采用粒子群算法(Particle swarm optimization,PSO)对神经网络模型的参数进行优化,提高模型精度,最后求得土壤化学物质预测表。Soil organic carbon is an important component of soil chemicals.A grey correlation model was Established between organic carbon and chemicals,and conducting joint analysis with grazing intensity.It is concluded that appropriate grazing can help improve the cycling of soil organic carbon.Due to the large number of dimensions in the prediction data,A BP neural network model was selected to predict effectively.PSO is used to optimize the parameters of the neural network model and improve model accuracy.Finally a soil chemical substance prediction table was obtained.

关 键 词:灰色关联模型 神经网络 粒子群算法 

分 类 号:TP1[自动化与计算机技术—控制理论与控制工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象