检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:庄雨鑫 Yuxin Zhuang(Institute of History of Science and Technology,Inner Mongolia Normal University,Hohhot,Inner Mongolia,010022,China)
机构地区:[1]内蒙古师范大学科学技术史研究院,内蒙古自治区呼和浩特010022
出 处:《教育研究前沿(中英文版)》2024年第2期110-117,共8页Education Research Frontier
摘 要:雅克·阿达玛是20世纪法国著名的数学家、数学教育家,具有丰富的数学创造性经验,对于数学发明的心理过程有着深刻的体会和独到的见解。在继承和发扬庞加莱关于数学发明心理活动过程规律的基础上,进行深入研究,完成《数学领域中的发明心理学》一书并于1945年出版,创立和发展了数学发明的心理学说。本文以该书为落脚点,深入剖析以“无意识思维”为核心的数学发明心理过程,即“准备、酝酿、顿悟、整理”四个阶段,从不同角度分析直觉思维对数学发明创造发挥的重要作用,辅以名人事例证明直觉思维在发明创造过程中具有逻辑思维无法取代的作用。基于上述研究工作,分析阿达玛的数学教育思想,并总结其对当今数学教育具有的重要价值。Jacques Hadamard was a famous mathematician and educator in France in the 20th century.He had rich creative experience in mathematics and had profound understanding and unique views on the psychological process of mathematical invention.On the basis of inheriting and carrying forward Poincare's law on the process of mental activity of mathematical invention,he carried out in-depth research,completed the book"The Psychology of Invention in the field of Mathematics"and published it in 1945,and established and developed the psychological theory of mathematical invention.Based on the book,this paper deeply analyzes the psychological process of mathematical invention with"unconscious thinking"as the core,namely the four stages of"preparation,brewing,Epiphany and finishing",analyzes the important role of intuitive thinking in mathematical invention and creation from different angles,and proves that intuitive thinking has an irreplaceable role in the process of invention and creation with celebrity cases.Based on the above research work,this paper analyzes Hadamard's thought of mathematics education and summarizes its important value to today's mathematics education.
关 键 词:雅克·阿达玛 《数学领域中的发明心理学》 发明心理 数学教育思想
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:18.216.110.162