检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:贾朱植 刘凯 刘佳鑫 祝洪宇[2] 宋向金 Jia Zhuzhi;Liu Kai;Liu Jiaxin;Zhu Hongyu;Song Xiangjin(School of Applied Technology,University of Science and Technology Liaoning,Anshan 114051,China;School of Electronic and Information Engineering,University of Science and Technology Liaoning,Anshan 114051,China;School of Electrical and Information Engineering,Jiangsu University,Zhenjiang 212013,China)
机构地区:[1]辽宁科技大学应用技术学院,鞍山114051 [2]辽宁科技大学电子与信息工程学院,鞍山114051 [3]江苏大学电气信息工程学院,镇江212013
出 处:《国外电子测量技术》2024年第6期179-190,共12页Foreign Electronic Measurement Technology
基 金:国家自然科学基金(52007078);辽宁省教育厅基本科研项目(JYTMS20230946)资助。
摘 要:针对强噪声、跨工况场景下数据分布差异导致传统卷积神经网络(CNN)模型泛化性能低、诊断能力不足的问题,提出一种基于并行卷积核和通道注意力机制的滚动轴承故障诊断方法。构造了带有不同尺度卷积核的并行网络结构,可以在抑制噪声干扰的同时有效提取出数据中的故障特征信息;融合通道注意力机制对卷积层特征提取能力进行增强,提升模型抗噪性能以及跨工况负载下的自适应诊断能力。利用凯斯西储大学轴承数据集训练并测试诊断效果,将该方法与其他方法进行了性能对比。结果表明,在跨工况不同负载情况下,所提方法的诊断平均准确率为97.3%,在不同信噪比噪声干扰情况下的诊断精度平均达93.8%,均高于其他比较方法,所提出的方法在复杂多变工况下具有良好的抗噪性能和泛化能力。In view of the problems of poor generalization ability and insufficient diagnostic capability of traditional convolutional neural network(CNN)model due to the data distribution discrepancy in strong noise environment and across working conditions,a fault diagnosis method for rolling bearings based on parallel convolution kernel and channel attention mechanism is proposed.Using this method,a parallel network structure with different convolution kernel scales was designed to effectively extract feature information from data while suppressing noise interference.Meanwhile,channel attention mechanism was added to enhance the feature extraction capability of the convolutional layer,and improve the anti-noise performance of the model and the adaptive ability in across working conditions.Diagnosis effects were trained and tested by using bearing data set of Case Western Reserve University.The proposed method was compared with peer approaches under different signal-to-noise ratio(SNR)cases and across working conditions,it was shown that the proposed method achieves an average diagnosis accuracy rate of 97.3%in across working conditions and in the variable noise experiment on the bearing dataset from Case Western Reserve University the diagnostic accuacy rate is beyond 93.8%,which are obviously higher than the competing methods;the proposed method have better noise resistance and generalization ability under complex and variable working conditions.
分 类 号:TH17[机械工程—机械制造及自动化]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.23.101.186