基于循环神经网络的动车组温度数据预测研究  

Research on Temperature Data Prediction of EMU Based on Cyclic Neural Network

在线阅读下载全文

作  者:杨永 王瑞锋 YANG Yong;WANG Ruifeng(Mengji Railway Company of Limited Liability,Hohhot 010050,China;Baotou Depot of China Railway Hohhot Bureau Group Company,Baotou 014000,China)

机构地区:[1]蒙冀铁路有限责任公司,内蒙古自治区呼和浩特010050 [2]中国铁路呼和浩特局集团公司包头车辆段,内蒙古自治区包头014000

出  处:《大连交通大学学报》2024年第3期53-57,共5页Journal of Dalian Jiaotong University

基  金:中国国家铁路集团有限公司重大课题(K2021J009)。

摘  要:采用循环神经网络建立了基于CRH5A型动车组温度类数据的预测模型,对影响预测结果的影响因子、模型层数及神经元个数进行了明确的界定,对CRH5A型动车组实车开展持续性追踪分析,采集动车组运行真实数据,进行积累和培养。在利用神经网络预测模型对数据进行训练后,CRH5A型动车组变压器温度峰值预测模型精度可达94.2%,牵引电机温度峰值预测模型精度可达93.8%,齿轮箱温度峰值预测模型精度可达95.3%,轴箱温度峰值预测模型精度可达92.7%。动车组温度数据预测结果的精确度可满足实际应用需求,预测模型在提高列车检修效率、节支降耗方面有着重要的作用。The increasing modernization of China high-speed railway provides a data base and application platform for the application of information technology and big data technology on multiple units.A prediction model based on CRH5A EMU temperature data is established by using a cyclic neural network.The influence factors,number of layers and number of neurons that affect the prediction result are clearly defined.Continuous tracking analysis is carried out on CRH5A EMU real vehicle,and real data of CRH5A EMU operation is collected to accumulate and cultivate.After training the data with the neural network prediction model,the accuracy of the temperature data prediction results can meet the practical application requirements.The precision of the CRH5A type EMU transformer temperature peak prediction model can reach 94.2%,the precision of the CRH5A type EMU traction motor temperature peak prediction model can reach 93.8%,the precision of the CRH5A type EMU gearbox temperature peak prediction model can reach 95.3%,and the precision of the CRH5A type EMU axle box temperature peak prediction model can reach 92.7%,which plays an important role in improving the efficiency of train maintenance and reducing costs.

关 键 词:循环神经网络 动车组 温度数据 预测模型 

分 类 号:U266[机械工程—车辆工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象