检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:杨桂松[1] 郑孝劲 何杏宇 贾明权[3] YANG Guisong;ZHENG Xiaojin;HE Xingyu;JIA Mingquan(School of Optical-Electrical and Computer Engineering,University of Shanghai for Science and Technology,Shanghai 200093,China;College of Communication and Art Design,University of Shanghai for Science and Technology,Shanghai 200093,China;Southwest China Institute of Electronic Technology,Chengdu 610036,China)
机构地区:[1]上海理工大学光电信息与计算机工程学院,上海200093 [2]上海理工大学出版印刷与艺术设计学院,上海200093 [3]中国西南电子技术研究所,成都610036
出 处:《智能计算机与应用》2024年第5期52-60,共9页Intelligent Computer and Applications
基 金:南通市科技局社会民生计划项目(MS12021060);浦东新区科技发展基金产学研专项(PKX2021-D10);敏捷智能计算四川省重点实验室开放式基金资助项目。
摘 要:与传统移动群智感知系统的感知工人相比,无人机具有能够执行危险任务、易控制、不需要额外的激励成本等优点,因此无人机更适合作为任务执行的主体。然而无人机的能量有限,且感知任务的完成时间有限制,因此如何综合考虑以上2个因素设计一种高效的任务分配方法是一个关键问题。由此提出一种基于能量效益的无人机辅助移动群智感知系统任务分配方法,在能量效益最大化的同时提高系统任务完成率。该方法首先在无人机获得的回报和消耗的能量基础上定义了能量效益计算方式,用于评价任务分配方案的优劣;然后,设计了一种改进的模拟退火遗传算法以获得能量效益最大化的任务分配方案。经实验证明,与其他基准算法相比,所提出方法在任务平均能耗、系统任务完成率、系统能量效益有更好的表现。Compared with the traditional mobile crowd sensing system for sensing workers,UAVs have the advantages of being able to perform hazardous tasks,being easy to control,and not requiring additional incentive costs,making them more suitable as the subject of task execution.However,the energy of UAVs is limited and the completion time of sensing tasks is restricted,so how to design an efficient task assignment method considering the above two factors is a key issue.Thus,an energy-efficient UAVassisted mobile crowd sensing system task assignment method is proposed to improve the system task completion rate while maximizing energy efficiency.The method firstly defines an energy-efficient calculation based on the obtained returns and consumed energy by the UAV for evaluating the merits of the task assignment scheme;then,an improved simulated annealing genetic algorithm is designed to obtain an energy-efficient task assignment scheme that maximizes energy efficiency.It is experimentally demonstrated that the proposed method has better performance in average task energy consumption,system task completion rate,and system energy efficiency compared with other benchmark algorithms.
关 键 词:移动群智感知 能量效益 无人机 任务分配 模拟退火遗传算法
分 类 号:TP393[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.145.125.13