嵌入多阶泰勒微分知识的多尺度注意力循环网络深度时空序列预测方法  

Multi-Scale Attention Recurrent Network with Multi-order Taylor Differential Knowledge for Deep Spatiotemporal Sequence Prediction

在线阅读下载全文

作  者:孙强[1] 赵珂 SUN Qiang;ZHAO Ke(Department of Communication Engineering,School of Automation and Information Engineering,Xi’an University of Technology,Xi’an 710048,China)

机构地区:[1]西安理工大学自动化与信息工程学院通信工程系,西安710048

出  处:《电子与信息学报》2024年第6期2605-2618,共14页Journal of Electronics & Information Technology

基  金:陕西省气象局秦岭和黄土高原生态环境气象重点实验室开放研究基金(2021G-28)。

摘  要:融合先验物理知识的深度时空序列预测方法通常使用偏微分方程(PDE)进行建模,这种做法通常存在两大问题:(1)偏微分方程的近似精度低;(2)无法在循环网络中有效捕捉多种空间尺度的时空特征和时空序列的边缘相关空间信息。为此,该文提出了融合泰勒微分的卷积循环神经网络(TDI-CRNN)。首先,为了提高高阶偏微分方程的近似精度并缓解偏微分方程应用的局限性,设计了一种多阶泰勒近似物理模块。该模块首先使用泰勒展开式对输入序列作微分逼近,再将不同阶数之间的微分卷积层使用微分系数耦合,最后动态调整泰勒展开结果的截断阶数与微分项数。其次,为了捕获循环网络隐藏状态的多种空间尺度特征并更好地捕捉时空序列的边缘相关空间信息,设计了一种多尺度注意力循环模块(MSARM),在该模块的多尺度卷积空间注意力UNet(即MCSA-UNet)的卷积层中使用了多尺度卷积和空间注意力机制,目的是关注时空序列的局部空间区域。在Moving MNIST,KTH以及CIKM数据集上开展了大量实验,Moving MNIST数据集的均方误差(MSE)指标下降到42.7,结构相似性指数(SSIM)提高到0.912;KTH数据集的SSIM和峰值信噪比(PSNR)分别提高到0.882和29.03;CIKM数据集上的临界成功指数(CSI)提高到0.515。最终的可视化和定量预测结果均验证了TDI-CRNN模型的合理性和有效性。Deep spatiotemporal sequence prediction methods that incorporate a priori physical knowledge are commonly characterized by the utilization of Partial Differential Equations(PDE)for modeling.However,two main issues are concerned:(1)the limited precision in approximations with PDEs;and(2)the inability to efficiently capture spatiotemporal features at multiple spatial scales as well as the edge spatial information of the spatiotemporal sequences in the recurrent network.To address these challenges,one Taylor Differential Incorporated Convolutional Recurrent Neural Network(TDI-CRNN)is proposed in this paper.Firstly,in order to enhance the approximation accuracy of higher-order partial differential equations and to alleviate the limitations of PDE applications,one physical module with multi-order Taylor approximation is designed.The module is firstly used for the differential approximation of the input sequence by means of the Taylor expansion,and then couples the differential convolution layers with different orders via differential coefficients,and dynamically adjusts the truncation order and the number of differential terms of the Taylor expansions.Secondly,to capture the multiple spatial scale features of the hidden states in the recurrent network and to better capture the edge spatial information of the spatiotemporal sequences,one Multi-Scale Attention Recurrent Module(MSARM)is devised.Multi-scale convolution and spatial attention mechanisms are utilized in the convolution layer of the Multi-scale Convolution Spatial Attention UNet(MCSA-UNet),aiming to focus on local spatial regions within spatiotemporal sequences.Extensive experiments are conducted on the Moving MNIST,KTH,and CIKM datasets.The Mean Squared Error(MSE)on the Moving MNIST dataset dropped to 42.7,while the Structural Similarity Index Measure(SSIM)increased to 0.912.The SSIM and Peak Signal-to-Noise Ratio(PSNR)on the KTH dataset increased to 0.882 and 29.03,respectively.The Correct Skill Index(CSI)on the real weather radar echo CIKM dataset increase

关 键 词:时空序列预测 长短期记忆网络 知识引导 偏微分方程 泰勒展开式 

分 类 号:TN957.52[电子电信—信号与信息处理] TP391[电子电信—信息与通信工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象