基于三角形相似性的点云配准算法  

Point Cloud Registration Algorithm Based on Triangle Similarity

在线阅读下载全文

作  者:周大伟 钱炜[1] ZHOU Dawei;QIAN Wei(College of Mechanical Engineering,University of Shanghai for Science and Technology,Shanghai 200093,China)

机构地区:[1]上海理工大学机械工程学院,上海200093

出  处:《软件工程》2024年第7期61-64,共4页Software Engineering

摘  要:针对点云配准过程易产生错误匹配对、点云配准精度低等问题,提出了一种基于三角形相似性的点云配准方法。三对正确的匹配点对在几何空间上形成的三角形一定满足相似三角形的一些性质,例如三角形三边成固定比例、三角形顶点的法线和平面法线的夹角固定。因此,可以利用这些性质有效地减少点云配准过程中错误匹配点对其影响。该方法首先计算点云中每个点的快速点特征直方图(FPFH)描述符,使用三角形相似性的方法进行特征匹配,通过奇异值(SVD)分解得到一个变换矩阵。实验结果表明,该方法与基于正态分布变换(NDT)算法与最近邻迭代(ICP)算法结合的点云配准算法相比,配准效率提升了15.3%,配准精度提升了18.2%。To address issues such as wrong matching pairs and low accuracy in the process of point cloud registration,this paper proposes a point cloud registration method based on triangle similarity.Three correctly matched point pairs form triangles in geometric space that adhere to certain properties of similar triangles,such as fixed proportions of the triangle sides and a fixed angle between the normal of the triangle vertices and the plane normal.Therefore,these properties can effectively reduce the impact of incorrectly matched point pairs during the point cloud registration process.This method initially calculates the Fast Point Feature Histogram(FPFH)descriptor for each point in the point cloud,performs feature matching using triangle similarity,and obtains a transformation matrix through Singular Value Decomposition(SVD).Experimental results demonstrate that compared to the point cloud registration algorithm combining Normal Distribution Transform(NDT)and Iterative Closest Point(ICP)algorithms,the proposed method achieves a 15.3%improvement in registration efficiency and a 18.2%enhancement in registration accuracy.

关 键 词:FPFH ICP 随机采样一致性 目标配准 

分 类 号:TP301.6[自动化与计算机技术—计算机系统结构]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象