检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:张澧桐 田雨 顾鹏 张鑫 ZHANG Litong;TIAN Yu;GU Peng;ZHANG Xin(School of Mechanical and Electrical Engineering,Changchun University of Science and Technology,Changchun 130022,CHN;Changchun Equipment Technology Research Institute,Changchun 130000,CHN)
机构地区:[1]长春理工大学机电工程学院,吉林长春130022 [2]长春设备工艺研究所,吉林长春130000
出 处:《制造技术与机床》2024年第7期131-138,共8页Manufacturing Technology & Machine Tool
基 金:吉林省科技发展计划项目重点研发(JJKH20220732KJ)。
摘 要:渐进成形的减薄率是衡量成形件质量的重要指标。文章采用Box-Behnken设计实验方案进行试验,分析了刀具直径D、层间距Δz、成形角α和板厚t对减薄率的影响,并得到试验最优的参数组合。建立了工艺参数到减薄率的BP神经网络模型,用数据训练集训练网络,计算测试集减薄率预测模型的精度。针对BP神经网络平均误差大(6.42%)的问题,用粒子群算法(PSO)优化了BP神经网络模型参数,使预测误差降低到2.24%。PSO-BP神经网络模型可以有效预测工艺参数和减薄率的关系。The rate of thinning in incremental forming is a crucial indicator for assessing the quality of formed parts.In this study,we conducted experiments using a Box-Behnken design experimental scheme to analyze the impact of tool diameter(D),layer spacing(Δz),forming angle(α),and plate thickness(t) on the thinning rate.By obtaining an optimal combination of these parameters,we established a BP neural network model that correlates process parameters with thinning rate.The model was trained using a data training set and its accuracy in predicting the thinning rate for a test set was evaluated.To address the issue of high average error in the BP neural network model(6.42%),we employed particle swarm optimization(PSO) to optimize its parameters,resulting in a reduced prediction error of 2.24%.The PSO-BP neural network model effectively predicts the relationship between process parameters and thinning rate.
关 键 词:双面渐进成形 减薄率 智能神经网络 粒子群算法 正交试验
分 类 号:TG306[金属学及工艺—金属压力加工]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.129.89.50