检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:王连富 王梓帆 董俭雄 田光荣 WANG Lianfu;WANG Zifan;DONG Jianxiong;TIAN Guangrong(CRRC Changchun Railway Vehicles Co.,Ltd.,130062,Changchun,China;State Key Laboratory of Traction Power,Southwest Jiaotong University,610031,Chengdu,China;Locomotive and Car Research Institute,China Academy of Railway Sciences Group Co.,Ltd.,100081,Beijing,China)
机构地区:[1]中车长春轨道客车股份有限公司,长春130062 [2]西南交通大学牵引动力国家重点实验室,成都610031 [3]中国铁道科学研究院集团有限公司机车车辆研究所,北京100081
出 处:《城市轨道交通研究》2024年第7期21-26,共6页Urban Mass Transit
基 金:国家重点研发计划课题(2019YFB1405401);中国国家铁路集团有限公司科研计划课题(J2020J006)。
摘 要:[目的]我国现有的高速列车轴承故障监测和诊断多基于单一的温度或振动数据,单一的温度数据容易遗漏关键部件早期的故障信息,单一的振动数据较难对某些复杂耦合工况故障进行识别。因此,有必要结合温度与振动数据,研究温振特征融合的齿轮箱轴承故障诊断方法。[方法]为了确定VMD(变分模态分解)法的分解参数,引入加权峭度系数指标;结合LMD(局域均值分解)法和VMD法,提出一种新的处理轴承原始振动数据、提取故障特征的方法;基于改进的VMD法、LLE(局部线性嵌入)特征降维法和BP(反向传播)神经网络,提出一种温振特征融合的轴承故障诊断方法。以时域特征和温度特征作为输入,建立温振特征融合的轴承故障诊断模型。利用高速列车滚动轴承试验台,对国内某型高速动车组用齿轮箱轴承开展故障模拟试验,采集相关振动数据验证所提方法的有效性和可行性。[结果及结论]所提齿轮箱轴承故障诊断方法对齿轮箱轴承正常状态、外圈故障和滚动体故障的平均识别准确率均高于98%。[Objective]Existing methods for high-speed train gearbox bearing monitoring and diagnosis in China often rely solely on temperature or vibration data.Rely solely on a single temperature data point may result in missing early fault information of key components,while only vibration data may struggle to support identification of faults under complex coupling conditions.Therefore,it is necessary to combine temperature and vibration data to develop a fault diagnosis method for gearbox bearings with temperature-vibration features.[Method]To determine the decomposition parameters of VMD(variational mode decomposition)method,a weighted kurtosis coefficient indicator is introduced.Combining LMD(local mean decomposition)and VMD methods,a new approach for processing raw vibration data and extracting fault features is proposed.Based on the improved VMD method,LLE(locally linear embedding)feature dimensionality reduction method,and BP(back-propagation)neural network,a method for temperature-vibration feature fusion in bearing fault diagnosis is proposed.Time-domain features and temperature features are used as inputs to establish the temperature-vibration feature fusion bearing fault diagnosis model.Using a high-speed train rolling bearing test bench,fault simulation tests are conducted on gearbox bearings of a certain type of high-speed EMU(electric multiple units)in China,and relevant vibration data are collected to validate the effectiveness and feasibility of proposed model.[Result&Conclusion]The proposed fault diagnosis method for gearbox bearings achieves an average identification accuracy of over 98%for normal state,outer ring fault,and rolling element fault.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.200