检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:王晓霞[1] WANG Xiaoxia(College of Science,Qiqihar University,Qiqihar Heilongjiang 161006,China)
机构地区:[1]齐齐哈尔大学理学院,黑龙江齐齐哈尔161006
出 处:《佳木斯大学学报(自然科学版)》2024年第6期160-163,共4页Journal of Jiamusi University:Natural Science Edition
摘 要:研究针对分数阶Bagley-Torvik微分方程的初边值问题,结合遗传算法(Genetic Algorithm,GA)和单输入Chebyshev神经网络(Chebyshev neural network,ChNN)搭建GA-ChNN神经网络,经过迭代后的最终权值即为微分方程的数值解。实验结果表明,研究优化的GA-ChNN神经网络误差绝对值更低,得到的数值解更为拟合微分方程的精确解。通过比较CPU执行时间可知,ChNN神经网络、GA-ChNN神经网络和算法优化的GA-ChNN神经网络的平均CPU执行时间分别为14.803s,1.026s和0.190s。通过与其他求解算法相比较,研究采用的优化GA-ChNN神经网络的绝对误差值最小且误差波动范围最小,其绝对误差最小值接近0.021,而误差波动范围在[0,0.2]之间,进一步验证了算法的优越性。Research on the initial boundary value problem of fractional order Bagley-Torvik differential equations,combining genetic algorithm(GA)and single input Chebyshev neural network(ChNN)to construct a GA-ChNN neural network.The final weight after iteration is the numerical solution of the differential equation.The experimental results indicate that the optimized GA-ChNN neural network has a lower absolute error value,and the numerical solution obtained is more accurate in fitting the differential equation.By comparing the CPU execution time,it can be seen that the average CPU execution time of ChNN neural network,GA-ChNN neural network,and algorithm optimized GA-ChNN neural network are 14.803s,1.026s,and 0.190s,respectively.Compared with other solving algorithms,the optimized GA-ChNN neural network used in the study has the smallest absolute error value and the smallest error fluctuation range.Its absolute error minimum value is close to 0.021,and the error fluctuation range is between[0,0.2],further verifying the superiority of the algorithm.
关 键 词:Bagley-Torvik CHEBYSHEV多项式 数值解 GA 泰勒展开式
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.49