检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:潘盛湖 徐尚飞 刘剑 谢林成 PAN Shenghu;XU Shangfei;LIU Jian;XIE Lincheng(Oil and Gas Equipment Technology Sharing and Service Platform of Sichuan Province,Chengdu 610500,China)
机构地区:[1]石油天然气装备技术四川省科技资源共享服务平台,成都610500
出 处:《机械科学与技术》2024年第6期1031-1041,共11页Mechanical Science and Technology for Aerospace Engineering
基 金:四川省教育厅项目(13ZA0178)。
摘 要:针对现有刀具振动无线检测系统中传感装置的布置对刀柄改造较大、成本较高等问题,以传感装置低功耗、小型化为设计理念,采用低功耗蓝牙5.0、MEMS传感器及Python,设计了一种用于铣削加工中的刀具振动无线检测系统。传感装置测试及铣削实验结果:相较于已有同类传感装置,系统传感装置保证信号传输性能的同时,降低了功耗,实现了小型化;提出的基于融合指标的OVMD-双树复小波降噪方法的去噪效果优于小波阈值等其他常用降噪方法;与现有无线系统相比,设计的无线系统使用同一CNN模型进行刀具磨损状态识别的准确率更高。结果表明设计的无线系统更具实用性的同时,能有效地保留振动信号中的特征,为刀具磨损状态识别提供了一种获取振动信号的可靠方案。Aiming at the problems that the layout of the sensor device in the existing wireless monitoring system for tool vibration has a large effect on the transformation of the tool holder and the high cost,a kind of wireless detection system of tool vibration used in milling based on the low power consumption and miniaturization of the sensor device is designed by adopting the lowpower Bluetooth 5.0,MEMS sensor and Python.Sensing device testing and milling Comparing with the existing similar sensing devices,the system sensing device ensured signal transmission performance,reduced power consumption,and achieved miniaturization;the denoising effect of the present variational model decomposition-dual tree complex wavelet denoising method based on the fusion index is better than other common denoising methods such as wavelet threshold;comparing with the existing wireless system,the designed wireless system used the same convolutional neural networks model to recognize the tool wear status with higher accuracy.The results showed that the designed wireless system was more practical and can effectively retain the characteristics of the vibration signal,provideing a reliable way to obtain vibration data for tool wear status recognition.
关 键 词:刀具振动 低功耗蓝牙5.0 MEMS传感器 基于融合指标的OVMD-双树复小波降噪 CNN
分 类 号:TP277[自动化与计算机技术—检测技术与自动化装置]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.137.210.249