检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:常天庆 张杰 赵立阳 韩斌 张雷 CHANG Tianqing;ZHANG Jie;ZHAO Liyang;HAN Bin;ZHANG Lei(Army Academy of Armored Forces,Beijing 100072,China;PLA Naval Submarine Academy,Qingdao 266199,Shandong,China)
机构地区:[1]陆军装甲兵学院,北京100072 [2]海军潜艇学院,山东青岛266199
出 处:《兵工学报》2024年第7期2085-2096,共12页Acta Armamentarii
摘 要:针对基于可见光图像的装甲目标检测算法易受地面复杂环境干扰的问题,提出一种基于可见光与红外图像融合的装甲目标检测算法,通过卷积神经网络自适应融合可见光和红外图像特征,提高对地面复杂环境下装甲目标的检测精度。针对装甲目标检测任务,通过实拍方式构建一个在复杂地面环境下的可见光-红外装甲(Visible-Thermal Armored Vehicle,VTAV)目标图像数据集;基于经典的单阶无锚框检测模型,设计前端特征融合结构、中端特征融合结构和后端特征融合结构;在VTAV数据集上对比不同融合结构和不同融合方式间的检测性能差异。实验结果表明,后端特征融合结构性能最佳,与基于可见光图像的装甲目标检测算法相比,mAP@0.5∶0.95提升2.6%,表明基于可见光与红外图像融合的装甲目标检测算法能够有效提升地面复杂环境下装甲目标的检测精度。The armored vehicle detection algorithm based on visible images is easily interfered by the complex ground environment.An armored vehicle detection algorithm based on fusion of visible and infrared images is proposed.The features of visible image and infrared image are adaptively fused by a convolutional neural network,which improves the detection accuracy of armored vehicle in complex ground environment.A visible-thermal armored vehicle(VTAV)dataset is constructed through on-site photography for the detection task of armored vehicle in complex ground environment.Based on the classic one-stage anchor-free detection algorithm,three fusion structures called early feature fusion,middle feature fusion and late feature fusion,are designed,and two different fusion methods are proposed.The detection performances of different fusion structures and fusion methods are compared on the VTAV dataset.The experimental results show that the peroformce of late feature fusion structure is the best,and compared to the armored vehicle detection algorithm based on visible image,mAP@0.5∶0.95 is increased by 2.6%.The armored vehicle detection algorithm based on fusion of visible and infrared images has been proven to effectively improve the detection accuracy in complex ground environment.
分 类 号:TP391.4[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:13.59.149.79