检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:徐玉杰 李宪华[1,2] 宋韬[3] Xu Yujie;Li Xianhua;Song Tao(School of Mechanical and Electrical Engineering,Anhui University of Science and Technology,Huainan 232001,China;The First Affiliated Hospital of Anhui University of Science and Technology(Huainan First People’s Hospital),Huainan 232007,China;School of Mechanical and Electrical Engineering and Automation,Shanghai University,Shanghai 200444,China)
机构地区:[1]安徽理工大学机电工程学院,安徽淮南232001 [2]安徽理工大学第一附属医院(淮南市第一人民医院),安徽淮南232007 [3]上海大学机电工程与自动化学院,上海200444
出 处:《河南科技学院学报(自然科学版)》2024年第4期36-46,共11页Journal of Henan Institute of Science and Technology(Natural Science Edition)
基 金:国家自然科学基金(61803251);安徽省重点研究与开发计划(2022i01020015);载运工具与装备教育部重点实验室开放课题(KLCE2022-01)。
摘 要:针对上肢康复机器人的训练轨迹运动生涩、不贴合人手臂的日常习惯等问题,提出使用改进粒子群算法对上肢康复机器人进行时间最优轨迹优化.由于粒子群算法极易早熟,存在寻优稳定性较差的问题,在算法中引入鸟类混群协同觅食的概念,设计了一种新的速度更新公式,考虑个体极值、群体极值和社会极值对粒子更新的影响,提高了算法在高维搜索空间中和高维约束条件下的全局寻优能力与寻优鲁棒性,并在粒子迭代过程中引入停滞变异补偿机制增加粒子多样性,进一步提升算法的寻优效率.通过MATLAB仿真实验,改进后的粒子群算法将平均最优时间缩短44.29%,平均收敛代数减小了16.75%,使得上肢康复机器人各关节运动符合康复训练要求,能够提高康复训练质量.Regarding the cumbersome motion trajectories of upper limb rehabilitation robots,which do not align with the daily habits of human arms,we propose the use of an improved particle swarm algorithm for time-optimal trajectory optimization.Addressing the issue of premature convergence and poor optimization stability inherent in the particle swarm algorithm,we incorporate the concept of flock foraging coordination in birds into the algorithm.A novel velocity updating formula is designed,taking into account the influences of individual extremum,group extremum,and social extremum on particle updates.This design enhances the algorithm’s global optimization capability and optimization robustness in high-dimensional search spaces and under high-dimensional constraint conditions.Additionally,a stagnation mutation compensation mechanism is introduced during particle iteration to increase particle diversity,further improving the algorithm’s optimization efficiency.Through MATLAB simulation experiments,the improved particle swarm algorithm reduces the average optimal time by 44.29%and decreases the average convergence iterations by 16.75%.Furthermore,the joint movements of the upper limb rehabilitation robot conform to the requirements of rehabilitation training,thereby enhancing the quality of rehabilitation training.
分 类 号:TP242[自动化与计算机技术—检测技术与自动化装置]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:18.227.21.218